МНОГОСЛОЙНЫЕ КОЛЬЦЕВЫЕ СТРУКТУРЫ

И. И. Смульский

Аннотация

Исследование поведения осесимметричных структур важно для понимания проблемы существования и устойчивости колец планет, шаровых звездных скоплений и галактик. На основе точного решения задачи осесимметричного гравитационного взаимодействия *n*-тел создан алгоритм построения многослойных кольцевых структур. В результате численного интегрирования дифференциальных уравнений движения точечных тел, входящих в эти структуры, изучена эволюция нескольких их моделей. Часть из них не изменяет своей конфигурации, другие – в результате межслойных взаимодействий меняют свой вид, третьи – часть тел выбрасывают из структуры.

Ключевые слова: гравитационное взаимодействие, многослойные кольцевые структуры точечных тел, численное интегрирование, устойчивость.

Проблемы существования и устойчивости некоторых конфигураций материальных точек, взаимно гравитирующих по закону Ньютона, были исследованы в статьях [1-7]. Эти конфигурации представляют собой осесимметричные структуры, состоящие из четырех, пяти, шести, семи, восьми, девяти, десяти и большего числа тел, а в моделях Б. Эльмабсута и Е.А. Гребеникова доказано существование осесимметричных структур с произвольным количеством компонент [5,6]. Последние существуют при условии выполнения некоторых точных аналитических условий, наложенных на гравитационные (массы тел) и геометрические параметры (взаимные расстояния между телами и угловые скорости их движения вокруг общего центра) моделей.

На наш взгляд, представляет интерес использование цитированных выше результатов, вместе с методами конструирования кольцевых структур [8], для изучения проблемы существования и устойчивости колец планет, шаровых звездных скоплений и галактик. Такой подход основан на точном решении задачи об осе симметричном взаимодействии *n*-тел [9].

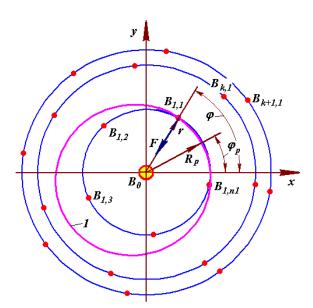


Рис. 1. Кольцевая структура осесимметрично расположенных периферийных тел $B_{k,ik}$ относительно центрального тела B_0 ; цифрой I обозначена эллиптическая орбита первого тела на первом кольце.

На каждое периферийное тело, например, $B_{I,1}$ (рис. 1), с массой m_I все остальные периферийные тела: $B_{I,2}$, $B_{I,2}$... $B_{I,nI}$ этого кольца и центральное тело B_0 воздействуют направленной к центру силой [9]

$$F = G(m_0 + m_1 f_n) m_1 / r^2, (1)$$

где G – гравитационная постоянная; r – расстояние от центрального тела m_0 до периферийного m_1 ; функция f_n , зависит от числа тел n:

$$f_n = 0.25 \sum_{i=2}^{n} \frac{1}{\sin[(i-1)\pi/n]}.$$
 (2)

Под действием силы (1) все периферийные тела движутся по траектории, которая в полярных координатах (r, φ) (см. рис. 1) имеет вид:

$$r = \frac{R_p}{(\alpha_1 + 1)\cos(\varphi - \varphi_p) - \alpha_1},$$
(3)

где угол φ отсчитывается от оси x; φ_p – угол перицентра; $\alpha_{_{\! 1}} = \mu_{_{\! 1}} / (R_{_p} v_{_p}^2)$ – параметр траектории; $\mu_I = -G (m_0 + m_1 f_n)$ – параметр взаимодействия; R_p – радиус перицентра и v_p – скорость тела в перицентре.

Уравнение (3) при α_1 = -1 представляет окружность; при -1 < α_1 < -0.5 – эллипс; при $\alpha_1 = -0.5$ – параболу; при $-0.5 < \alpha_1 < 0$ – гиперболу. Запишем также выражения для радиальной v_r и трансверсальной v_r скоростей:

$$v_r = \pm v_p \sqrt{(\alpha_1 + 1)^2 - (\alpha_1 + R_p / r)^2}, \quad v_t = v_p R_p / r,$$
 (4)

где скорость $v_r < 0$ при движении от апоцентра к перицентру, т.е. при $2\pi > \varphi - \varphi_p > \pi$. Для эксцентриситета орбиты e, ее большой полуоси a и периода обращения T имеем выражения:

$$e = -(1+1/\alpha_1), \quad a = \frac{2R_p\alpha_1}{2\alpha_1 - 1}; \quad T = \frac{2\pi a^{3/2}}{\sqrt{-\mu_1}}.$$
 (5)

Если в начальный момент (рис. 1) полярные координаты тела B_{IJ} равны r_0 и φ_0 , то его декартовы координаты и скорости в плоскости орбиты запишутся в виде:

$$x_0 = r_0 \cdot \cos \varphi_0, \qquad y_0 = r_0 \cdot \sin \varphi_0, \tag{6}$$

$$x_0 = r_0 \cdot \cos \varphi_0, \qquad y_0 = r_0 \cdot \sin \varphi_0, \qquad (6)$$

$$v_{x0} = v_r \cos \varphi_0 - v_t \sin \varphi_0, \qquad v_{y0} = v_r \sin \varphi_0 + v_t \cos \varphi_0. \qquad (7)$$

Создание кольцевых структур основано на следующих двух принципах.

- 1. На тело, расположенное вне кольцевой структуры, сила воздействия равна силе, которую создавало бы тело, расположенное в центре структуры и имеющее массу, равную массе всей структуры.
- 2. На тело, расположенное внутри кольцевой структуры, суммарная сила воздействия от всех ее тел равна нулю.

Обобщение этих двух принципов на случай непрерывного распределения массы по шаровому слою дано в монографии [10]. Можно показать, что они остаются справедливыми и для непрерывного плоского кольцевого слоя. Для кольца, состоящего из дискретных тел, эти положения локально нарушаются, однако при орбитальном движении тела эти локальные нарушения в значительной степени сглаживаются, поэтому предложенная структура может существовать.

Рассмотрим многослойную кольцевую структуру, состоящую из K колец. На каждом кольце с номером k, расположено n_k тел, массы которых одинаковы, $m_{k,ik} = m_k$, где индекс ik = $i_k = 1, 2, \dots, n_k$ – номер тела на k-том кольце. На каждое тело, находящееся на кольце k, в соответствии с положением «2», тела на внешних кольцах с номерами от k+1 до K не будут оказывать воздействие. Тогда сила воздействия на каждое тело с массой m_k , в соответствии с положением «I» и формулой (1), запишется в виде:

$$\vec{F}_{k} = -\frac{Gm_{k}\vec{r}_{k}}{r_{k}^{3}} [m_{0} + \sum_{j=1}^{k-1} n_{j} \cdot m_{j} + m_{k} \cdot f(n_{k})].$$
 (8)

Тогда параметр взаимодействия для каждого тела к-го кольца в соответствии с обозначениями к формуле (3) будет равен

$$\mu_{1k} = -G[m_0 + \sum_{i=1}^{k-1} n_i m_j + m_k f(n_k)],$$
(9)

а параметр траектории этого тела будет равен

$$\alpha_{1k} = \frac{\mu_{1k}}{R_{pk} \cdot v_{pk}^2} \,. \tag{10}$$

Обозначим угловое положение первого тела $B_{k,l}$ на k-ом кольце в начальный момент t = 0 через $\varphi_{0,k,l}$. Тогда полярные углы всех тел k-того кольца определяются по формуле

$$\varphi_{0,k,ik} = \varphi_{0,k,l} + (i_k - 1) \cdot \Delta \varphi_k, \tag{11}$$

где $i_k = 1, ..., n_k$, $\Delta \varphi_k = 2\pi / n_k$.

Так как у всех тел k-того кольца полярный радиус $r_{0,k}$ в начальный момент один и тот же, то его можно определить из уравнения (3) по заданному углу $\varphi_{0,k,l}$ первого тела и радиусу перицентра $R_{p,k}$. Радиус перицентра и параметр траектории $\alpha_{l,k}$ одинаковы для всех тел k-го кольца, а декартовы координаты $x_{0,k,ik}$, $y_{0,k,ik}$ и скорости $v_{x_{0,k,ik}}$ и $v_{y_{0,k,ik}}$ для всех тел k-того кольца определяются по формулам (6)-(7) по найденному радиусу $r_{0,k}$ и полярному углу каждого тела $\varphi_{0,k,ik}$. Входящие в выражениях (6)-(7) радиальная $v_{r_{0,k}}$ и трансверсальная $v_{t_{0,k}}$ скорости являются одинаковыми для всех тел k-того кольца и определяются по формулам (4).

Исходными характеристиками кольцевой структуры являются: количество колец K, масса центрального тела m_0 , шесть параметров каждого кольца: количество тел на кольце n_k , масса периферийного тела m_k , радиус перицентра $R_{p,k}$, эксцентриситет орбиты e_k или параметр траектории $\alpha_{I,k}$, начальный угол первой частицы $\varphi_{0,k,I}$ и угол ее перицентра $\varphi_{p,k}$, т.е. всего $P=6\cdot K+2$ параметров. С помощью этих параметров, по формуле (9) определяется параметр взаимодействия μ_{Ik} , а из формулы (10) определяем скорость в перицентре $v_{p,k}$. Далее, используя описанный выше алгоритм, определяем координаты и скорости всех тел кольцевой структуры.

Таблица 1. Параметры шести моделей кольцевых структур в единицах: массы периферийных тел m_k – в массах периферийного тела на первом кольце; радиусы перицентров $R_{p,k}$ – в астрономических единицах (а.е.); периоды обращений T – в годах. Dn – характеристика динамики в течение 30 лет: «Устойчива» – нет видимых изменений в течение 30 лет; «НУ» - неустойчива; в модели 10 «НУ, 23г.» указано, что структура разрушается через 23 года.

Па	Значения параметров для каждого кольца для 1, 2 и 3 моде-										
pa-	лей кольцевых структур										
мет	Мод. $1, m_0 = M_S$			Мод	$2, m_0$	$=M_S$	Мод. 3, $m_0 = 0.5 M_S$				
ры	1	2	3	1	2	3	1	2	3		
n_k	5	7	8	5	7	8	5	7	8		
m_k	1	2	3	1	2	3	1	2	3		
$R_{p,k}$	1	2	3	1	2	3	1	2	3		
e_k	0	0	0	0.05	0.1	0.15	0.2	0.05	0.1		
T_k	1.4	4	7.3	1.4	4.3	8.7	1.4	2.8	4.8		
Dn	Устойчива			Устойчива			НУ				

Па	Значения параметров для каждого кольца для 4, 5 и 10 моделей									
pa	кольцевых структур									
мет	Мод. 4, $m_0 = 0.5 M_S$			Мод.	5, m_0 =	$0.5M_S$	Мод. 10, $m_0 = 0.5 M_S$			
ры	1	2	3	1	2	3	1	2	3	
n_k	5	7	8	5	7	8	6	7	7	
m_k	1	2	3	1	1	1	1	2	3	
$R_{p,k}$	3	4.5	6	1	2	3	1	10	16	
e_k	0	0	0	0	0	0	0	0	0	
T_k	7.3	12.2	26.2	1.4	3.4	5.6	1.4	39.9	70.3	
Dn	НУ			НУ			НУ, 23 г.			

Располагая свободными параметрами кольцевой структуры можно задать различные дополнительные условия для создания определенных ее свойств. Например, в работах [4, 7] рассматриваются осе симметричные структуры, в которых тела движутся по круговым орбитам с одинаковой угловой скоростью. Такая структура может быть задана с помощью условий $\alpha_{l,k} = -1$, $T_k = T$. Из всех возможных P параметров будет использовано $2 \cdot K$ параметров для записи, согласно выражениям (5), системы из $2 \cdot K$ алгебраических уравнений. В результате ее решения эти параметры будут определены.

Мы рассмотрели две группы кольцевых структур, масса тел которых равнялась массе m_{SS} Солнечной системы. В первой группе масса центрального тела равнялась массе Солнца $m_0 = m_S$, а во второй – равна $m_0 = 0.5 \cdot m_S$. Структуры состоят из трех колец, т.е. K = 3 и общее число тел N = 21. Варьировались все шесть видов параметров. По рассчитанным заранее начальным условиям были численно проинтегрированы дифференциальные уравнения движения методом, изложенным в работе [11], и рассмотрено движение тел в кольцевых структурах. В табл. 1 приведены основные параметры шести моделей и итоговые результаты по их устойчивости. Угловые параметры $\varphi_{0,k,l}$ и $\varphi_{p,k}$ в этих моделях не оказывают существенного влияния, поэтому они в табл. 1 не приведены.

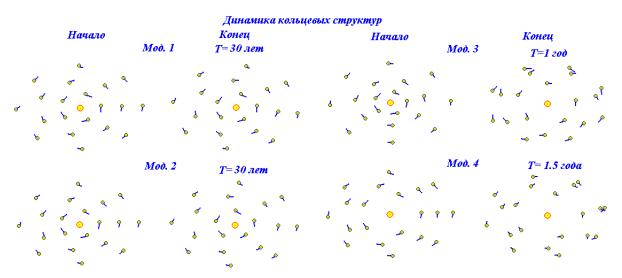


Рис. 2. Динамика 1, 2, 3 и 4 моделей кольцевых структур. В моделях 1 и 2 масса центрального тела $m_0 = m_S$; в моделях 3 и 4 масса центрального тела $m_0 = 0.5m_S$. Вариации параметров: e_k , n_k , m_k , $R_{p,k}$ представлены в табл.1. Центральное тело m_0 зачернено; размеры тел не соответствуют величинам масс; линии у тел соответствуют направлению и величине их скоростей.

В модели 1, из первой группы моделей, орбиты были круговые, а во второй – эллиптические с эксцентриситетами по кольцам 0.05, 0.1 и 0.15. На рис. 2 представлены положения тел в этих моделях в начале и в конце, по истечению 30 лет. Как видно из табл. 1, периоды обращения тел на кольцах изменяются от 1.4 до 8.7 лет. За 30 лет движения видимых изменений в этих моделях не наблюдается. Поэтому можно считать их устойчивыми. Во второй группе моделей, с большими массами периферийных тел, последовательно увеличивались перицентры орбит от 3 а.е. до 16 а.е. В этих моделях изменения появляются на первоначальном этапе (см. модели 3 и 4 на рис. 2). Затем они усиливаются и кольцевая структура нарушается. Следовательно, эти модели неустойчивы. Неустойчивость обусловлена локальным взаимодействием периферийных тел между собой.

Динамика кольцевых структур Мод. 10

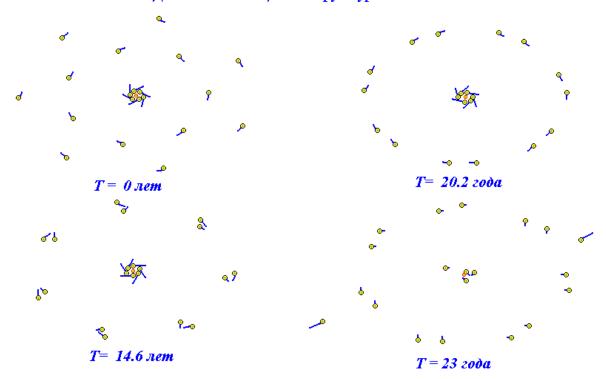


Рис. 3. Динамика 10-й модели кольцевой структуры: $m_0 = 0.5 m_S$. Объяснения см. рис. 2.

На рис. З более детально рассмотрена динамика десятой модели. В начале тела из первого кольца движутся без видимых нарушений осесимметричной структуры, а тела во втором и третьем кольцах стремятся сблизиться и, как видно, через 20.2 года они образуют общее кольцо. Затем происходит разрыв внутреннего кольца. Два его тела выбрасываются из кольцевой структуры в противоположных направлениях с большими скоростями. По длине линий видно, что скорости этих тел превышают скорости остальных тел в несколько раз.

Выводы.

- 1. Предложен алгоритм построения многослойных кольцевых структур.
- 2. Исследована динамика десяти моделей методами численного интегрирования дифференциальных уравнений.
- 3. Определены и исследованы некоторые устойчивые и неустойчивые модельные структуры.

В заключение автор выражает признательность Е.А. Гребеникову за внимательное отношение к работе и существенные дополнения при анализе литературных источников.

Литература

- 1. Гребеников Е.А., Козак-Сковородкина Д., Якубяк М. Методы компьютерной алгебры в проблеме многих тел, Из-во РУДН, Москва, 2002, 211с.
- 2. Ихсанов Е.В., Компьютерные методы нормализации гамильтонианов ограниченных задач небесной мехпники, Из-во РУДН, Москва, 2002, 128 с.
- 3. Земцова Н.И., Козак-Сковородкина Д. Проблема устойчивости стационарных решений ограниченной задачи двенадцати тел с неполной симметрией в случае резонанса частот третьего порядка // Теор. и прикл. задачи нелинейного анализа, ВЦ РАН им. А.А. Дорордницына, 2006, 77-90.

- 4. Гребеников Е.А., Диарова Д.Д., Земцова Н.Н., Существование и неустойчивость ромбоподобных центральных конфигураций в смысле Уинтнера для ньютоновой модели девяти тел // Теор. и прикл. задачи нелинейного анализа, ВЦ РАН им. А.А.Дородницына, 2006, 65-77.
- 5. Elmabsout B. Stability of Some Degenerate Positions of Relative Equilibrium in the n –body Problem // Dynamics and Stability of Systems, 1994, vol.9, N_{24} , 305-319.
- 6. Гребеников Е.А., Существование точных симметричных решений в плоской ньютоновой проблеме многих тел // Математическое Моделирование, 1998, т.10, № 8, 74-80.
- 7. Гуцу В.Д., Диарова Д.М., Земцова Н.И. Исследование устойчивости стационарных решений ромбоподобной ограниченной задачи десяти тел // Теоретические и прикладные задачи нелинейного анализа. М.: Из-во ВЦ РАН, 2007, 99-109.
- 8. Смульский И.И. Конструирование кольцевых структур // Фундаментальные и прикладные проблемы современной механики. Материалы VI Всероссийской научной конференции, посвященной 130-летию Томского государственного университета и 40-летию НИИ Прикладной Математики и Механики Томского государственного университета. Томск, 30 сентября 2 октября 2008 г. 2008, 431-432.
- 9. Смульский И.И. Осесимметричная задача гравитационного взаимодействия N-тел // Математическое моделирование. 2003, 15, № 5, 27-36. http://www.smul1.newmail.ru/Russian1/IntSunSyst/Osvnb4.doc.
- 10. Смульский И.И. Теория взаимодействия. Новосибирск: Из-во Новосибирского ун-та, ННЦ ОИГГМ СО РАН. 1999, 294c. http://www.ikz.ru/~smulski/TVfulA5 2.pdf.
- 11. Гребеников Е.А., Смульский И.И. Эволюция орбиты Марса на интервале времени в сто миллионов лет / Сообщения по прикладной математике. Российская Академия Наук: ВЦ им. А.А. Дородницына. М.: ВЦ РАН А.А. Дородницына. 2007. 63 с. http://www.ikz.ru/~smulski/Papers/EvMa100m4t2.pdf.