УДК 536.1+523.2+531.3

ДОЛГОПЕРИОДИЧЕСКИЕ КОЛЕБАНИЯ СОЛНЕЧНОГО ТЕПЛА ПО ПОВЕРХНОСТИ ЗЕМЛИ Смульский И.И.

Институт криосферы Земли ТюмНЦ СО РАН Федеральный Исследовательский Центр, 625026, Тюмень, ул. Малыгина, 86,

В связи с глобальным потеплением перед наукой возникла проблема установления его причины. Все теории глобального потепления должны асимптотически согласовываться с долгопериодическими изменениями климата. Поэтому без выяснения причины последних изменений нельзя установить причины короткопериодических изменений климата. За последние два десятилетия в результате решения ряда сложных задач небесной механики причина долгопериодических колебаний климата была установлена [1]. Они обусловлены эволюцией орбитального и вращательного движений Земли.

Распределение солнечного тепла по поверхности Земли в современную эпоху T = 0, показано на рис. 1 линиями 1. Количество тепла за год $Q_{\rm T}$ по широте Земли φ изменяется симметрично относительно экватора $\varphi = 0$: наибольшее количество тепла поступает на экваторе и наименьшее – на полюсах $\varphi = \pm 90^{\circ}$. Тепла за летнее полугодие $Q_{\rm s}$ (пунктирные линии) поступает больше на широте тропиков $\varphi = \varepsilon$, где $\varepsilon = 23.44^{\circ}$ – наклон плоскости экватора Земли к плоскости ее орбиты. При этом тепло распределено не одинаково по полушариям, например, экваториальный минимум находится в Северном полушарии. Количество тепла за зимнее полугодие $Q_{\rm w}$ на полюсах равно нулю и монотонно увеличивается к экватору. Оно также не одинаково по полушариям: максимум $Q_{\rm w}$ находится в Северном полушарии.

Это распределение тепла (рис. 1) создает современный климат на Земле. Он обусловлен параметрами орбиты Земли и ее оси вращения. В результате взаимодействия тел Солнечной эти параметры меняются, и распределение солнечного тепла становится другим.

Рис. 1. Распределение по широте φ летних Q_s , зимних Q_w и годовых Q_T количеств тепла за три эпохи: 1- современная, T=0; $Q_s^{65N}=5.9$ ГДж/м²; 2_m- самая теплая, T=31.28 т.н., $Q_s^{65N}=7.4$ ГДж/м²; 3_x- самая холодная, T=46.44 т.л.н., $Q_s^{65N}=5.9$ ГДж/м²; T- время от 30.12.1949 г.

На рис. 1 линиями $2_{\rm T}$ и $3_{\rm x}$ показаны изменение тепла по широте φ в самую теплую T=31.28 тысяч лет назад (т.л.н.) и в самую холодную T=46.44 т.л.н.

эпохи за 200 т.л.н. Эти эпохи характеризуются количествами тепла за летнее полугодие $Q_{\rm s}^{65{\rm N}}$ на северной широте $\varphi=65^{\circ}$. Углы наклона в три эпохи $(1,\,2_{\rm T},\,3_{\rm x})$ равны $\varepsilon=23.44^{\circ};\,32.10^{\circ};\,14.8^{\circ},$ соответственно.

От холодной эпохи (линия 3_x) к теплой 2_T количество тепла за летнее полугодие Q_s на полюсах увеличивается в 2.07 раза. На широте 65° Q_s изменяется в 1.57 раза. В теплую эпоху $2_T Q_s$ имеет экваториальный минимум в Северном полушарии, а в холодную эпоху 3_x — в Южном полушарии.

Количество тепла за зимнее полугодие $Q_{\rm w}$ от холодной эпохи $3_{\rm x}$ к теплой $2_{\rm T}$ больше всего изменяется на средних широтах. При этом на широте $\varphi=40^{\circ}$, в 1.38 раза больше Северном полушарии, чем в Южном. Величина $Q_{\rm w}$ в холодную эпоху $3_{\rm x}$ на всех широтах больше, чем в теплую эпоху $2_{\rm T}$. То есть, зимы на всей Земле в холодные эпохи теплее, нежели в теплые.

Количество тепла за год $Q_{\rm T}$ от холодной эпохи $3_{\rm x}$ к теплой $2_{\rm T}$ на полюсах увеличивается во столько же раз, как и $Q_{\rm s}$, т.е. в 2 раза. С уменьшением широты разница между $Q_{\rm T}$ уменьшается, и на широте $\varphi \approx 45^{\circ}$ $Q_{\rm T}$ не изменяется. В экваториальной области изменения $Q_{\rm T}$ обратные изменениям на высоких широтах: в холодную эпоху $3_{\rm x}$ тепла за год больше, чем в теплую $2_{\rm T}$. При этом изменение $Q_{\rm T}$ в 4 раза меньше чем в высокоширотной области. Поэтому основные изменения количества тепла за год происходят в высоких широтах.

Во время таких похолоданий, как в эпоху T = 46.44т.л.н., лето на широте $\varphi > 54^\circ$ холоднее чем сейчас на полюсе, снег не успевает растаять, и на Земле наступает ледниковый период. А во время теплых периодов, как в эпоху T = 31.28 т.л.н., лето в высоких широтах теплее, чем сейчас на экваторе. Поэтому происходит таяние ледников Гренландии и Антарктиды, и уровень мирового океана повышается. Периоды этих колебаний порядка 26 тысяч лет. Однако их амплитуда становится большой только при определенном сочетании параметров орбитального и вращательного движений Земли. Поэтому значительные потепления и похолодания происходят в нерегулярном порядке. В результате сопоставления этих колебаний тепла с палеоклиматическими данными за последние 50 тыс. лет установлено, что все они согласуются с палеоклиматом как по эпохам наступления, так и продолжительности и интенсивности [2].

Список литературы:

- Смульский И.И. Новая Астрономическая теория ледниковых периодов. "LAP LAMBERT Academic Publishing, Riga, Latvia, 2018. 132 C. ISBN 978-613-9-86853-7.
- 2. Смульский И.И. Новые результаты по инсоляции Земли и их корреляция с палеоклиматом Западной Сибири в позднем плейстоцене // Геология и Геофизика, 2016, т. 57, № 7, С. 1393—1407. http://dx.doi.org/10.15372/GiG20160709.