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FOREWORD

All happening round us is caused by bodies intevast We perceive the
world in the way we understand interactions. Famegle, the ancient people con-
sidered that gods controlled the winds and a igéwe us the Sun and the Moon
light, directed people and supervised their adgsitNow we consider these ideas
naive. We know what air is and what its structuewhat are the reasons of air
velocity and when it becomes wind or even a tegrhnlrricane. Our knowledge is
so reliable, that we undoubtedly consider mistatkenancient people’s vision of
the world.

In this connection there are some questions. Are dur conceptions of the
world? Which of them will not be found naive an@téfore rejected by our des-
cendants? Are there some true conceptions amongrag, which will never be
rejected? Can we find out our mistaken conceptébsreject by ourselves?

There is a surrounding world round us. It is thg, she stars, the trees, our
house, the subjects in it and so on. These objdéd¢te external world change and
influence each other. We investigate them, explaénreasons of objects change,
in this way we create the world understandingh# &ncient people involved the
gods’ power or demons’ ones in the world explamstjove explain everything
with the help of forces, fields, ether, energy,cgptime etc. As we can see, the
explanations and the understanding of the worldstzorly change, but the world
practically remains changeless.

Apparently, any inquisitive person has the questiosimilar to above-
mentioned one. Since young years | searched theeamso these questions. As a
result, I have found them and presented my ide#tssnwork.

This book is issued in Russian in 1999. Since ¢aglers and | have revealed
the lapsuses and typing errors. For example, Beofusz Laski from Krakow has
seen defect in substantiation of equation (3.22).4inoviy B. Gaydukov from
Novosibirsk has detected a error in the formul8ZR. All the lacks are corrected
in this edition. Everyone who has drawn my attentio the lacks | express my
gratitude.

We have translated the book on English with thep el Stylus program.
Thus, Olga I. Zumareva has done a great amounbdf.Watyana S. Olesova has
edited the text. Konstantin E. Sechenov has editscbook. So | am very grateful
to all of them.

Even the serious ideas while being translated lierolanguage may look ri-
diculous. | expect that in this case the reader smilile and continue the way in
difficult mathematical proofs. Nevertheless, | dsk English-speaking reader to
excuse me for my English.

The book is issued due to the grant of the Intémmngtrogram of Presidium,
Russian Academy of Science No. 13, direction 3.

All consists of two:
world around and its understanding.

The author 1998.

PREFACE TO RUSSIAN EDITION

The modern understanding of micro- and macrocodmsed on the TR.
From the moment of its creation and up to predenttitical consideration to TR
has not disappeared. Such known scientists as mozdas: A.N.Krylov [25],
S.1.Vavilov [9], V.F.Mitkevich [37], Hungarian acacthician L.Yanoshi [78,79];
professors: O.D.Hvolson, N.P.Kasterin, K.N.Shapdshn[74], A.K.Timiriazev,
T.A.Lebedev, S.A.Bazilevsky, A.A.Tiapkin [67] andany others in the former
USSR and others countries did not accept TR, bedaoffered the abstract
world with paradoxical properties, which contradithuman logic.

The works with criticism of the TR practically wenet published and the so
more so were not reprinted. On being available maficemation it is possible to
make the following submission about their developm@t the end of the 50-th
years Australian G.Builder [87] considered the amtion of the theories of an
ether with a TR. In the 60-th the critical works tfe Minsk’s philosopher
A.K.Maneev [34] and Chelyabinsk physician G.D.Loimai29, 30] were pub-
lished. These scientists, and also S.A.Basilevgki(.Shurupov, A.G.Zamiatin
and others organized the Lomonosov scientific-platstoterie, issued the hand-
written journal of the same title. It is necesstarynark it as the first stage.

In an extremity of 60-th years the American Bryai\@llece [122] shown a
possibility of summation of radiowaves speed witletocity of the Earth relative-
ly a Venus. The B.G.Wallece’s work, based on olmtgmal data, might be
marked as the second important stage in the dewelopof the unrelativistic di-
rection in physics. It rendered the consequent nppts of TR moral support.

The third stage is the publication of the prof. \CHleshev’'s book in 1984
[69], where with a large evidence the incompatipitbf the theory of relativity
with the actual reality is shown.

The end of 80-th — the beginning of 90-th yearshef present century was
marked by the intensive development of works witticism of TR as special and
general. By decades the ripening of antagonismRdY many representatives of
a science and engineering, whose activity was naiteém with practice, it was
gradually accumulated in the unpublished articlessatises and books. The reor-
ganization in the USSR has become the trigger nmsmapromulgation of these
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works in popular printing, in the new scientifiaujmals and at many national and
international conferences, carried in differentrtoies. They have begun from the
publication of V.I. Sekerin's brochure [47] andoatsoceeded the popular scientif-
ic journals [4, 11], in the cooperative-issues biges [14] and even in the news-
papers [17, 41, 42, 48, 57, 61, 70].

The V.I.Sekerin’s brochure is to be consideredhasfourth stage of devel-
opment of antirelativistic movement. In it witha@de conviction and expressive-
ness the defects and inconsistencies of the TR steren. The large effect on the
public opinion was also induced by the brochurehef professor and national
deputy USSR A.A.Denisov [14]. Due to it the broagblic has known, that there
are scientists, who do not recognize the TR astdpuman wisdom.

Every day we learn names of scientists from diffe@untries, standing in
an opposition to the Theory of Relativity, who wewglier unknown to the scien-
tific community. The different sides of a probleme a&onsidered. The works of
[41, 43, 79, 87, 92, 103] are devoted to the amalgs the spatially-temporary
transformations, the paradoxes of the TR are censitlin other works [6, 51, 66].
The serious critical analysis of the Theory of Reity is represented in works the
Lie Koe (USA) [100], Xu Shaozhi and Xu Xiangqun @p&es Republic of China)
[127, 128], Xowusu S.X.K. (Nigeria) [126] and maoitpers [8, 11, 13, 14, 44, 89,
93, 95, 104, 105, 109]. Being based to the clakkigas of mechanics and phys-
ics, Thomas E. Phipps, Jr. [107] and J.P Wesle§][t8nsider the interactions of
the bodies and phenomenon of light propagationaring bodies; D.L. Bergman
[85] develops the models of elementary particldsMP Kanarev [20] derives the
postulates of a quantum mechanics and axioms dfaipaemporary relations;
C.W. Lucas, Jr. [102] determines the periodic prige of the elements; V.I. Su-
horukov with the colleagues analytically derives #pectra of first ten elements
[63] etc. In these works the classical conceptiofnspace, time and mass, which
do not depend on movement, are used.

In 1994 our monograph [59] was published, whereawalysed the funda-
mentals of the Theory of Relativity, its main dafewere revealed and the new
method of the interactions description, based assital submissions about space,
time and mass, was offered. Dissidents-physicigsthis work with unanimous
approval. Many orthodox scientists of TR paid attenon it. It could not be dis-
carded by referring to unprofessionalism of théhautTherefore academic issuing
of the book is possible to estimate as the fiftlgetof new physics becoming.

In 1997 there was printed a monograph of the Wéargfida University pro-
fessor O.D. Jefimenko [98], where he derived dttigistic formula within the
framework of a classical mechanics and electrodyecsfmom fields delay at rela-
tive movement of interacting objects. This methedeads to works of Oliver
Heaviside[94].

At the end of the 19th century it became evidentgt the interaction of the
charged bodies depends on their movements. G.Atoproposed a hypothesis,
according to which the variation of interactionderoccurs because of change of
the sizes of a body with its movement in imagingtee However the interaction
of two bodies depends on their velocity in relattoneach other, but do not de-
10

pend on any absolute velocity. Therefore A.Einstednl to alter G.A.Lorentz's

hypothesis and as a result the description of astens of moving bodies was
constructed as the description of interactions ofiomless bodies. At this case the
bodies parameters (space, time and mass) changerentz's transformations. It

is the first line of development Electrodynamicshieth the modern physics is
founded.

The second line ascended to Oliver Heaviside'sksvinom 1888 and was
based on final velocity of propagating of interantiOwing to it, the interaction of
two bodies, which relatively moved each other,as equal to interaction of mo-
tionless bodies with the same distances betwean,ths the fields, expressing
this interaction, are retarded. If to move thedeto on interval of time, which is
necessary for propagating of interaction betweeatids they will express the in-
teraction of relatively moving bodies. In 1997 thmok of the professor of West-
ern Virginia University Oleg D. Jefimenko was isduahere he deduced all rela-
tivistic results within the framework of the clasai Mechanics and Electrodynam-
ics, grounded on retardation of fields. This metlvash completely replace the
special and general TR.

Unlike the first two methods, the author of the mgraph developed a me-
thod, which is completely within the framework otahanics. As a result of the
analysis of development of electromagnetism heduese to a conclusion, that
force of interactions of moving each other two cfeak or of magnetized bodies
depends not only on distance between them, butd&Epends on heir relative ve-
locity. The author has derived the force expressiasing on the experimental
laws of electromagnetism. He has spread this mediesdloped to various cases.
He has solved a number of new tasks and the naWigese received. They show
that our world is not arranged in the way followiingm modern physics, based on
TR. This method is ready to use and the preserk Isotevoted to its statement.

The Theory of Relativity influenced deeply on ounnd outlook and on the
bases of our knowledge. In repeated controversids tive TR supporters you
could hear many times that the relativistic lawadflition of velocities is perfect,
and the simple summation of velocities in a cladsimechanics is approximate
and fair for small velocities. When we showed that classical addition of veloci-
ties is identical to an arithmetical operation 2 = 4, and relativistic is equivalent
2 + 2 =5, we were answered approximately in thay.\vilhe first law of addition
and the second one are hypothetical, but the vedati law of addition of veloci-
ties is confirmed experimentally, therefore it igrect.

The space is distorted and becomes isolated pdiags turns to energy, and
time pass into a matter in the entrails of stat®er€ is a trip on time in the future
and past. All this is not from fantastic novels.esb are themes of fundamental
researches. The theoretical physics has resultechyistical perception of the
world. Therefore for the author there was a diffitask to understand the bases of
our knowledge. It was necessary to find out, whethés possible with space,
time, velocity, mass, force, energy etc. to makevakstated manipulations? What
is random hypothesis in our knowledge? Also whethere is, what is firm foun-
dation and eternal truth?
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Therefore in the first chapter the bases of oumkadge are considered. All,
what the person is connected, with the author haged into two parts, first is the
world around, and second is perception, understgndie. the world around de-
scription. The person cannot change the world atdun his meditation, but he
constantly changes and improves the descripticghefvorld around. It is shown
what space and time are. It appears, the resalmparing properties of subjects:
their sizes and variability, with properties of teeandard bodies. The author
comes to a conclusion, that the only reliable kralge is one we receive as a
result of comprising the different properties ofiles with the appropriate proper-
ties of the standard bodies. Representations, @asélte assumptions are inevita-
bly rejected at occurrence of the new facts. Thoeeett is necessary aspired not to
enter hypotheses into the description of world adou

In the second chapter the concepts of the Mechanésonsidered: velocity,
acceleration, action, force. It is shown that #ned of the Mechanics can be con-
sidered as our method of describing the interastitm nature objectively there is
an interaction between bodies. It is displayedceceteration of body. We describe
the interaction by means of force. Therefore treelration and force are equal to
accuracy of coefficient, which we call mass. Théhauproves that there cannot
be other dependence of force on acceleration. ésiablished, space, time and
mass cannot depend on velocity of a movement, lsgr@éfore the introduction of
such dependence in the TR was a mistake.

In the third chapter it is shown that the interaictbetween moving charged
bodies depends on velocity. It is grounded thenitédn of the basic equations of
electrodynamics as results of measurement of foofanteraction between bo-
dies. Their mathematical derivation is given. Tliffecential equations for force
are deduced from the experimental bases.

In the fourth chapter these equations are soleednteraction of two point
bodies and the expressions for force of interactibtwo moving bodies are re-
ceived. The law of force is checked up in differlemiting cases.

In the fifth chapter the movement of two interagtibodies is considered.
The velocities, time of movement and trajectorybotlies are calculated. In the
micro- and macrocosm the bodies move on thesectosjes. They give a new
explanation to the observable phenomena.

In the sixth chapter it is considered the intécacof the charged and magne-
tized different form bodies on a moving particleisl shown how to apply the ap-
proach if the electrical and magnetic field strénigtonly given.

In the seventh chapter the method of forces isiegfor calculation of dif-
ferent interactions, including design of acceleratof elementary particles. Here
are also shown wide opportunities of the metholbwéhg solving a number of
tasks that cannot be accomplished by other methods.

In the eighth chapter the mutual relation of thethind of forces with the TR
method is considered. The light phenomena betwesning bodies including the
phenomenon aberration and Doppler's effect areuleadsd. The expression for
velocity of light is received at relative movemeifita source and receiver.

12

In the ninth chapter the nearluminal velocity dédpries of movements are
considered. The attracting from infinity stone wall on the Earth with velocity
of 11 km/sec, on the Sun - 500 km/sec. And theeesach massive and dense
stars, at which velocity of fall will achieve velgc of light. Their names are
"black holes". The objects of the macrocosm cae giach other such velocities.

The tenth chapter is devoted to superluminal marégm They are observed
in space, when the space particles enter atmosphéne Earth and on the Earth.
The process of observation of superluminal objscanalysed and it is investi-
gated its interaction. A lot of attention is givenacceleration of elementary par-
ticles up to superluminal velocity and prospectapplying superluminal move-
ments are also considered for anti-asteroid priotedf the Earth and for interstar
flights.

In the eleventh chapter the gravitational intecanst are investigated. It is
considered the Mercury perihelion precession probénd is also shown, that
there is no ground of considering the velocity vty propagation equal to light
of velocity. The numerical algorithm of solving nyabodies problem is stated.
The axisymmetric many bodies problem is precisallvexd and its results are
compared to the numerical decisions with interactiwree and four bodies. The
task center-symmetric accretion of substance igesohnd the problems of the
Sun energy are considered.

In the end of the monograph the definitions of nm@dncepts, computer pro-
grams of problem solving and some results of nuraésolutions are given.

The formulated above stages of development oflativistic physics are
subjective and rather conditional. It is necesgarynention the influence of the
conferences, the new scientific journals, origimgtsocieties and individual scien-
tists in different countries. For example, per &ang the large response has re-
ceived the statement of group scientists of Pull©wbservatory against a TR.
Their activity, including S.A.Tolchelnikova, andsal other scientists from St.-
Petersburg: P.F. Parshin, M.P. Varin etc. in oizgion and realizations of Inter-
national Scientific Conferences plays a large raleantirelativistic movement.
Last decade the unrelativistic works are publisthee to the publisher of the jour-
nal "Apeiron" C. Roy Keys, the founder of the joairfiGalilean Electrodynamics"
Prof. Petr Beckmann, editor of "Physics Essays'talde. Panarella.

Since 1994 the Alliance of Natural Philosophy heshdly the doctor John E.
Chappell together with Southwest Branch of Ameri€aciety of Development of
a Science carries out the annual conferences dlifistdents-physicists. It is ne-
cessary to mention the argued criticism of the TyRabChinese physicist Xu
Shaozhi, on pages of the some international josrpaf the last years. On being
available little information the articles and bookigh TR criticism of some for-
eign scientists, so as unknown and known, inclugid. L. Essen, are published.

Many scientists, including Bryan G. Wallace, PB&éckmann, Stefan Mari-
nov, V.l. Sekerin etc., underwent oppressions ardqrutions for their antirelati-
vistic ideas. During the last years some of themehdied: Prof. S.A. Bassilevsky,
Prof. Richard A. Waldron, Lee Coe, Prof. Petr Beakm candidate of the phys-
ics-mathematical sciences G.D. Lomakin, candiddtéechnical sciences A.G.
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Zamiatin, Dr. Toyvo Jaakkola, Bryan G. Wallace,f&eMarinov. Not each from
them managed to comprehend truth, but they seaiitheeing returned this up to
an extremity. To them, researchers of truth, weotiethe present book.

Finally | express my gratitude to Prof. L. EssBony Keys, Dr. E. Panarella,
Prof. Oleg D. Jefimenko, Dr. David L. Bergman, Pidmberto Bartocci for im-
proving my articles promoting their publication English. The correspondence
with Prof. Andre K.T. Assis, David L. Bergman, Pré€.D. Vlasov, Dr. George
Galeczki, Oleg D. Jefimenko, Millenium Twain, caddie of the physics-
mathematical sciences L.A. Pobedonoscev, candigfatechnical sciences G.l.
Suhorukov, Robert J. Hannon, Xu Shaozhi and mangrststrengthened reliance
of the my conclusions and was a source of an irdtion and new ideas, what |
am grateful for to the listed scientists.

Especially I am very much obliged to my colleagiesrel.A. Apasev and
Oleg I. Krotov for their help in my work at the dgdOl'ga S. Gul’ for the prepa-
ration of the manuscript, Leonid J. Smulsky for ltedp in the development of the
computer programs and in computer service.

The work at the book would be impossible withdw& benevolent relation to
it of the director of Institute, academician Vladir®. Melnikov, what | am cor-
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NOTATIONS

A - work;
a - semiaxis of elliptic orbit;

¢, ¢ =clyue; - speed of light in vacuum and medium;

E - Electrical strength;

E; - full energy;

E. - kinetic energy;

E; - thermal energy;

e - charge of an electron;

F - force of action on a body of other body;

G - Gravitational constant;

H - magnetic strength;

h = v R - kinematic angular momentum;

| - magnitude of a current;

m - mass of a particle or body;

my, - initial mass of object with a variable mass;
My = o MMz arranged mass of two interacting objects;
m +m;

M - magnetic charge;

q - electrical charge;

I =iX + jy + K - position vector of a point or particle;

f1, I - position vectors of two interacting objects;

pell

=T, — T, - relative position vector between two interactoigects;

R, =yR? —[BXIQ]Z;

Ry =- 2,ul/cf - "gravitational” or light radius;

R, - radius of an apocentre: maximum distance betirgeracting objects;

R, - radius of a pericentre: minimum distance betwiegeracting objects;
R= R/R, or R = R/R, - dimensionless distance between particles;

T - temporary period of movement on a trajectory;
To s - temporary halfcycle of movement on a trajectory;
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0= Tvx + Toy +ko,; v- velocity of movement of a particle;
o, , v, - radial and transversal velocity of a particle;

00,y - radial and transversal velocity of a particl@ipointRy;
vp - transversal velocity of a particle in pericentre

oy =0 fop; . =, /v, - dimensionless radial velocities;

vg - velocity of the receiver of a radiation;

vg - velocity of a stimulus source;

w - acceleration of a particle or body;

Xik s Wik » Zik » Uik » Vi » Wik » Usie » D » Wy - Projection of coordinates, velocity and
acceleration of a particle with numbegy, k.
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a= =
2
RpCi

- parameter of interaction;

Ry
a, = ,ul/ (vag), - parameter of a trajectory;

a,lo = /11/(Rovt20) - parameter of a trajectory concerning any poiitha radius
R ]

Bo =0/C; B=0/cy; B =vi/Cii By =0y [Ci By =0,/C15 Bio =00/

Bio =00/, - velocity of a particle in relation to speed ight;

Vo =187 = B2 vy == B = B2 v, = 1= B - By
¢ - dielectric permeability of a medium;

& - eccentricity of a trajectory;
M - magnetic permeability of a medium;

_ Glp(my +my)
=
Emim,
tional interaction;
p - denseness of an electrical charge;

o= I area density of a charge of a slice;
4ab
@ - magnetic flux;

@+ - angular period of a trajectory;
@, - angular period of an ellipse-like or final trefery, i.e. angular dis-
tance(span) from a pericentre up to an apocentrbalf-angle between asymp-

or (4 = —G(ml + rr12) - constant of electromagnetic or gravita-
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totes for hyperbolic-like trajectories counted aftee clock hand from a negative
position of an axes;
#p - full angular period of a final trajectory, dugirwhich the particle returns in

the same point of space with by constant velocity.

Differential operators:

g=r9+79 419,
ox ~ody o0z
- 62 62 62
A =00 =—+—+— -operator of the Laplace;
X~ 0y 0z
197 . ) N
D-A——zElat—z - D'Alembertian, where; =cor ¢ =¢;;
G
gradu = Clu;
P d
div A= A=A O L OA
ox 0y 0z

rotA:curIA:[ix,&] ;

.. 0A - _| 0A
ot Azi 0A, OAy +] 0A, 0A, K y O0A :
dy 0z 0z ox ox oy

div gradu =0 Eﬂiu)= Au;
graddivA= [ Eﬁi,&)z M+[OX[OxA];
rot rot A =[] [ﬂi,&)— O2%A.
Integrated theorems [24]
§A(r)d§ = .[i,&(r)dv - Gauss theorem;
S v
[ [Ar)xdS] =~ [ [0 Ar)]av;
S \%

ju(r)dé:jiu(r)dv;
S \%

§A(r)dr = j[i x A(r)]dS - Stokes theorem.
S

Used constants
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¢=3010" cm/sec - speed of light;

my,, =16720107**g - mass of a proton;

me = My, =91095010°%° g - mass of an electron and positron;
e=4800"cm"°g%*/sec - charge of an electron;

Ry, =140107*° cm - radius of a positron;

R, =2817010"*cm - radius of a proton;

G =6.6725910™* m®/ (sec? Dkg) - gravitational constant;

mg = 197[10%° kg - mass of the Sun;

me =596[10% kg - mass of the Earth;

Rs = 695[10° m - radius of the Sun;

re =la.e.=1.496010""m - average distance of the Earth from the Sun;

R =6372[10° m - average radius of the Earth;
ap =3952 AU — major semiaxis of Pluto;

r.c =23100% m - distance up to the nearest statentauri.
Orbit parameters of the Mercury:

a=0.387AU; e=0.206;T =0.204year, i =7°0.2'.
AU — astronomical unit.
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CHAPTER 1

THE WORLD AROUND AND THE MAIN POSITIONS OF
ITS DESCRIPTION

1.1. PHYSICAL THEORY AND DESCRIPTION OF NATURE

The present book is devoted to the theory of icteva. What is
a theory? There are theories of the ship, planenetalwork busi-
ness and there is a physical theory, for examm@erltieory of Rela-
tivity, Quantum Theory. In the first three theoribe principles and
methods of fulfilment of work are described: builgiof the ship
and plane, production of details, assembly of itehgese theories
differ from practice because they are used in dlsedne. For exam-
ple, the airplane or the ship is created, the nrachakes a file and

in according with the theory saws with it a detalil.

And what is the physical theory today? It is sormghother. In the modern
physical theory the initial hypothesises are aa@jgind the picture of the world is
created on them. So, in the Theory of RelativitiR] Dn the base of principle of a
relativity and principle of a limiting velocity is constructed the world, in which
space, time and mass depend on a relative velo€itpovement. Adding a hy-
pothesis about the light velocity of gravity andthe principles substituting alge-
braic mathematics for geometric have led to the e&@nTheory of Relativity
(GTR), where the world is curved four-dimensionad®e-time. Thus, the process
of development of the physical theory is the prea#screation of the world.

So, there are two varieties of the theories, theeestwo method of its under-
standing. One is the description of consideredatbjgroperties of nature, recep-
tions and methods of human activity, etc. And theepis the process of creation
of the world. We will understand the Theory of hatetion as the first kind of the
theory. There the calculation methods of interadtiwill be described. Tradition-
ally these problems were considered by mechanidh &herging of the electro-
dynamics, TR, the nuclear physics, the theory efneintary particles, the quantum
mechanics, and other areas of modern physicsntkeactions have become the
subject of the research of new sciences and haeedrd the limits of mechanics.
Hereinafter they should return to its bosom. At ¢given stage it is expedient to
determine the whole area of interactions as a agpacience - the Theory of In-
teraction, underlying its being in common with thiferent sections of physics.
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Science, in particular Physics, was not develaaaabrding to written script.
It has simultaneously various sights, various apphes and receptions, which
sometimes even are mutually opposite. Therefomrethre different sights of the
theory and therefore of science. Supporting on¢hef, we will not prove the
inaccuracy of others. Nevertheless we will trytetes some ground of our choice.

1.2. WORLD AROUND AND ITS DESCRIPTION

Everything that surrounding us what we constad#gl with can be divided
into two areas. First, the world around: the sksrss trees, our house, subjects in
it etc, which does not depend on our discourse.sEoend area is our description
of the world around, its reflection in one's miiitd,understanding. It is contained
in the books, is studied at school, is presentesuinconsciousness. If the world
around we cannot be changed by the reasoninggjralerstanding of the world
constantly varies. For example, earlier man imagjthat the Earth is the centre of
the universe and the firmament rotates round thghEBlow we know, that the
Earth rotates round the axis, moves round the $he,Sun makes movement
round the centre of the Galaxy, and the last onkesianovement at interaction
with other galaxies. However there is a mass oérotubmissions, which our gen-
erations will find by fallacies, and the understagdof the world will be changed
by a radical image. Besides even methods of subnisd the world vary. So, if
in the ancient time the world was represented aardmages: gods, elements,
ground, light, ether, etc., now it is representednathematical objects: wave func-
tions, singularities, solitons, strings, levelsesfergy, energy-momentum tensors
etc.

As we see, the description of the world can esdgntiffer from the world.
But nevertheless there are some receptions of ékerigtion, which give practi-
cally constant knowledge of it. We know durationaofear in days and day in
hours, we know height of mountains and depth ofseéms, we know temperature
of water freezing and temperature of steel meltilig. are sure in this knowledge.
It is based on comparison of objects propertiessidwvell on it in more details.

1.3. THE CHANGE OF THE OBJECTS
THE WORLD AROUND AND TIME AS ITS MEASURE

We begin with selecting the certain propertiesgrahterizing the objects of
the world around. For example, all objects chaige. man is born a child, grows,
turns to the young man, becomes mature, then agkslias. During the human
life other changes happen. Every day Sun movesfomament, a day changes a
night, phases of Moon, seasons of a year are ctaioge Many of changes are
repeated and are cyclical, others are unique —@ntea supernew star, collision
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of the Levi-Shumeker to the Jupiter. Propertiea change and movement charac-
terise all objects of the world around.

To define a measure of a change of object theaqoapares this change to
some standard change. During the human historghtege of different objects
was selected as standard: cyclical change of adayight, change of phases of
Moon, change of year seasons, change of generatibasge of dynasties, drain
of water or sand from capacities, repeating hesat<etc. The magnitude of a
change is determined in the results of compariegttject change with the stan-
dard change. It expresses in an amount of stardt@ntiyes or in an amount of
their parts and is called time. For example, charfdhe man, i.e. his life, passes
on the average during 70 revolutions of the Eartind the Sun that is identical to
an amount of cycles of season changes. There are isults of a comparison of
changes: duration, gap of time, instant etc., whighsynonyms or update features
of changes. The gap of time designates an amouheafycles of a standard
change equivalent to a considered change of thecol#nd the instant of a con-
sidered change designates binding it to the cectgite of a standard change.

Depending on choice of the measurement standardaime change will be
expressed by different magnitude. For exampleatieeof an oak is equal to 350
years or 5 human lifes. During human activity tlystem of the measurement
standards of changes was created: second, miraue,the day, year etc. and it is
established the accurate correspondences between th the results of compari-
son of changes of objects with standard changeseagived knowledge of the
world: the turtle lives 300 years, the sequoia 0G§ears, and the Earth exists 5
billions years. This knowledge will never becom#lafsious. They can undergo
some quantitative changes caused by several rea8brigst, the process of a
comparison afterwards can be executed with a greatracy. For example, at
first the duration of a year was determined in 86%s, but after many years it was
updated and now within five significant figures reak365.25 days. Secondly, the
changes of an investigated object or measuremantiatd can depend on differ-
ent circumstances. At unfavorable vital conditidhe duration of a person's life
can not be 70, but 35 years and even less. Angeghdular watch, which is trans-
ferred in a point with the other acceleration of\gtation, or spring ones - in a
location with other temperature, will show otheration of a change. Thirdly, the
changes also change. In accordance with wear thvemment of mechanical watch
changed. With increase of amount of the Earth tdiais round the Sun the dura-
tion of a year in days changed. Therefore the tesfla comparison of changes
should be indicated to circumstances, which theedd on, and to a moment of a
comparison. Making extrapolations of it in the fitwr the past you must conduct
additional researches into change of changes @fstigated object and standard
ones and to correct results of a comparison. Famele, the age of the Earth of 5
billion years concerns to present movement of taghEround the Sun. Probably,
from the beginning of his emerging the Earth hagent00 billions of revolutions
round the Sun, or probably 1 billion. It is possibthat 2 billions of revolutions
ago there was no Earth, but there was a lens-stdifiade cloud. As we see, the
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careful study by a method of a comparison can apears great knowledge of the
world. And if we take into account circumstancesaafomparison, such descrip-
tion of the world will remain valid so long as thegll not be changed or there
will be no circumstance, which we did not take iatzount before.

1.4. SIZE OF OBJECTS AND ITS MEASURE

The second property of the world around, whichaa imost frequently deals
with, is magnitude of objects. Being compared obgat is found to be less or
more than the other. So, a finger pin is less thatop, the stop is less than a hand
(up to a cubit joint), hand is less than a man,rttan is less than a tree. Many
from the recounted objects were selected as thesunement standards: feet, el-
bow, step (in Russia). The magnitude of an objeatetermined in the results of
comparing it with the measurement standard andesgps by an amount of the
measurement standards or their shares. For exathplenagnitude of a man is
equalled to 6 ft. Now a large part of mankind usescially created measurement
standard of magnitude or length — the platinumidiim beam of a x-shape sec-
tion stored in Sevre (France) at Internationalceffof measures. The magnitude of

a beam at the temperature 8Chetween two marked primes on it is called meter.

Thus, the magnitude of objects both in macro -, iara microcosms is expressed
by amounts or shares of meter.

The magnitude of objects, as well as their chadgpends on many circum-
stances: for example, temperature, pressure eaod&td meter is made of such
material, which in some range of temperature dasschange the magnitude.
However the change of temperature in a greatererangealization of measure-
ments on the special conditions is necessary fdngainto account the definition
of objects magnitude.

The magnitude of one man can be more than the witsedirection from the
heels up to a head, it is more than the third ona direction of shoulders and
more than the fourth one in a direction of a badtemach. It is peculiar to other
objects, i.e. three kinds of magnitude in threeually perpendicular directions
are inherent to them. However for their measurerttensame measurement stan-
dard is used. For want of consideration of two bedi is necessary to define the
magnitude of a gap between them. The gap, as welea magnitude of object,
places in three mutually perpendicular directidrfs'e magnitudes of gaps between
objects are measured by the same measurement rstasfdiength. Objects and
gaps between them will form their container, whichalled space.

There are many varieties of measures of magniaidbe objects: a size,
length, breadth, height, depth, distance etc. Afhem are received comparing the
magnitude of an object with the same measuremantdatd of magnitude. The
size of the object is the result of comparison lgeot magnitude with the magni-
tude of the measurement standard. Length is theapesize of an object, breadth
is average size, as a rule in a horizontal plamptiis size of an object on a ver-
tical downwards. A distance between objects iza of gap between them. There
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are a number of properties of objects: square,mejuand form, which are deter-
mined by a combination of sizes of the object.

In the results of a comparison of magnitude ototg we find out a distance
between bodies and cities, lengths of the riveesght of mountains, square of
countries, diameter of the Earth, distance upamssiMany sciences have appeared
due to a measurement of object magnitudes: geogrgglometry, astronomy etc.
Apparently, the mass of knowledge obtained in #sults of a comparison of ob-
ject magnitudes is the largest. The magnituderisam property of the object. So
long as we do not know it reliably, we doubt ofst&nce of an object. For exam-
ple, the absence of knowledge about magnitudekeofentary particles in a mod-
ern Physics calls a doubt in their existence.

1.5. UNHYPOTHETIC DESCRIPTION
OF THE WORLD AROUND

Except a changeability and magnitude there areyrotiver properties of the
world around: warmth, light, sound etc. For thedscription the man also has en-
tered the measurement standards, as a result giacomg properties are deter-
mined in degrees of temperature, amount of caraflesninosity, decibels of
loudness etc. It allows determining propertiesigjéots to determine influence of
one property to the other: for example, the infheenf the body temperature on its
luminosity, length of a string on a tonality of@usd, temperature and pressure on
gas volume. As a result the man finds dependebeitvgeen properties. Such ap-
proach is created all the description areas of\iebaof nature objects, for ex-
ample, thermodynamics, optics, electrodynamics etc.

Hereinafter they select more complicated propgrtehich are a combina-
tion of simple ones. Other properties, on the @girare detailed and appear de-
pendent from the earlier entered magnitudes. Se tisea system of the descrip-
tion of the world around, where the magnitudesropprties are determined by a
comparison with the measurement standards andefpendencies between prop-
erties of objects as dependencies between magsitudesstablished.

Thus knowledge about objects of the world aroubthioed in this way al-
lows to predict their behaviour, allows to be guidemong them, to reconstruct
their separate stages or even allows to constuah sombinations of the phe-
nomena, which did not happen in the world. For gdemthe man has created
objects, which have overcome a terrestrial ativactind went out in space. In this
process the results of human operations will cpoed to intentions as accu-
rately, as the properties of objects were compaiittdl properties of the measure-
ment standards. For want of it, naturally, the ¢omas of comparison should be
satisfied.

In the represented process of receiving knowlexfge nature the hypothesis
and the suppositions about mechanisms of the phem@m@re not considered. The
picture of the world is not created on them. Hére world around is studied, is

23



compared and is measured. And here it is necessarnderstand the theory as the
description of object properties of nature and dpon methods of human activ-
ity and their results.

The usual system of the unhypothetic descripticcréated by mankind dur-
ing millenniums and depends on many factors. Eveay studies it on separate
elements and never fully learns the whole systea).ds a rule, does not partici-
pate in revealing of new properties of the world artroduction of the new meas-
urement standards. He has an impression that theures of properties represent
some world, which exists irrespective of him, exisbjectively and eternally. He
imagines, that there is a time, in which all eved¢selop; there is a space, in
which all objects of the world around are placed.the results of such submission
the man has questions: what is time? Is it anynegseCan it be discrete? Or is it
turns to energy as assumed N.A. Kozyrev, and maghepace? The similar ques-
tions occur concerning space. Is it any essenciéiaterial? Is it curved or recti-
linearly and isotropic? Are two parallel directdmintersected in it or are not in-
tersected? Maybe they are intersected, and magbeodrintersected. Let's accept
at first one paradigm, and then the other. Thesk samilar hypothesises and
doubts capture people, if they lose submissionrevttee world around, and where
its description.

Entered by the man the measures of propertiesespfr magnitude of ob-
jects, time - for their variability etc. are thesdgption of the world around. This
description could be different. Other propertiesilddbe chosen, other measure-
ment standards could be entered. For example, dgmitnde of the object can be
characterized by capacity or volume, the descmptibinteractions can be charac-
terized by energy and force, the heat at the datsmni of thermal processes can be
characterized by entropy and energy. The methodiseofiescription are changed
in time. Among the different peoples the changéghiif objects and their magni-
tude was determined differently in different tim8smething, which today is con-
sidered as space and time, early was representételmther. The ancient people
had fabulous images (gods, titaniums, heroes, adevsss; their area of dwelling -
hell, paradise and other worlds) alongside withabtial people and geographical
objects. The description of other properties chdragwell. It is necessary to re-
member and at researching always need to wondethemhi is the world around
or it's description. For example, what ether, sabsé, consciousness, spirit, mass,
field, energy, force, charge, electron, meson, nreut photon, graviton, soliton,
planet, star, galaxy, black hole, neutron star,ni@v Land, Antarctic Continent
are. Are these the description of the world aroanids objects?

When we become to deal with some strange, we womldat this is and how
it is functioned. However not all questions aretipent. We can ask about the
object of the world around, what parts it considtsvhat are its properties are.
We can ask questions to the description, how we ki&fined it, what circum-
stances were, how it depends on them. The answiiedel the unhypothetic de-
scription of the world around. It will be objectikaowledge of nature, which fur-
ther will not be discarded by descendants.
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People often say that it is impossible to undecsthe world around without
hypothesises and they consider that accepted ibdbmning guesses and suppo-
sitions are checked up and confirmed, but the uimtoed ones are thrown. Hy-
pothesises, which will be agreed by the observabémomena, remain.

The operational analysis of a human brain and gg®of thinking shows,
that it is self-deception. The man has a temptatiobe influenced by a bright
hypothesis. It is possible to follow a hypothegi®mace arises at the man in case,
when all circumstances of problems are not clafifieo follow to a at once, and
for clearing up of circumstances the years candogired. But the experienced
expert will not afford to take a great interestarhypothesis. He will continue
complicated and hard work on study of object, itsperties, and influence on
them of other objects and circumstances. As thelteebe will achieve such un-
derstanding of features of object, that can foresekto describe them, not attract-
ing hypothesises.

CHAPTER 2

THE BASIC PRINCIPLES OF THE MECHANICS
2.1. MOVEMENT OF OBJECTS AND ITS MEASURE

The change of the world around happens in diffei@ems. Movement is one
of them. The gap between moving objects is changedsure of movement is the
velocity. An average velocity of moving one objegtrelation to other is defined
by ratio of a change of a distandebetween them per periatt to magnitude of
this gap, i.ew =dl/dt. Because change of gap between two objects isdeyes

that velocity characterizes movement of one objéttt respect to the second. It is
often forgotten and velocity is pertained only teembject. For example, the ob-
ject moving relatively a surface of the Earth isgidered as absolutely moving.
They link frame of reference with the Earth, thésteact from the Earth and con-
sider movement objects in this system and themaoités are represented by abso-
lute properties of objects. It frequently resuliseirrors. For example, if to take
into account only velocity of a plane relativelytiarth, flight time from Novosi-
birsk to Moscow will be represented with a largeerif we do not take into ac-
count a velocity of a plane regarding air mediuorcé western wind can delay
arrival of a plane for half an hour. Thus, velodgynot the property not of one
object, but two. Therefore, for want of interactiohmany objects it is necessary
to consider their mutual velocities, i.e. to comsi@ time history of their mutual
distances.

The disposition of objects from each other cainttree various directions.
Therefore there are three velocities, which at dgtion by their vector magnitude
in cartesian frame are determined by three comperadra vector of a velocity
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U= rvx + Ivy + Rl)z. (2.1)

The velocity s can remain constant. In this case the object mstiela-
tively other is equable and rectilinear. In thopedific cases of zero velocity the
distance between objects is not changed also tleeinaest from each other. At
the same time relatively other objects they careteny velocities.

The velocity of a body can be changed. For exaympttionless object starts
moving or during movement the velocity is increased its the direction is
changed. As the velocity is proportional to chadggances between two bodies,
the change of a velocity can be caused by changeowEment each from them.
For performance of a change of a velocity of a bibdyconcept of acceleratiom
was entered which reflects change velocities oflyne object. For it some read-
out system is imagined, which in a momehas identical with a body velocity ,
and hereinafter its velocity is not changed. Thistem is called inertial in that
sense, that it moves on inertia, i.e. nobody inftgss it changes its velocity. In a
further instant+At change of a velocity in the attitude to the secbady is not
considered any more, but chadge in relation to this unaccelerated system is
considered. The average of acceleration is detexdis attitude of a modification
of a velocity for a gajt to magnitude of a gap and in a vector kind is chote

)
W= 2.2
" (2.2)

So the certain acceleration of a body is alreasllitsolute performance, in-
stead of relative, bound to other objects.

2.2. INTERACTION AND ITS DESCRIPTION

Why does the body get acceleration? The man hes d@nvinced, that cases
accelerated movements of bodies have the reasther bodies act on them. We
will understand action of one object on the otrelaa ability of the first body to
reduce in movement the second body or to changenitgement. To change
movement of a body means to change its velocityeeibn magnitude, or on a
direction, i.e. to inform it acceleratiow to him. From here the magnitude of ac-
tion on a body is determined by magnitude of arekecation, which it gets or will
get, when this action begins. If there is not ameglon, there is no action, or the
action of the first body is compensated by a coseem a direction by the other
action. For example, the Earth attracts the stemgpended on a spring, but it does
not change the movement, as a spring counterdstsltitreates action, which is
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converse in a direction to the action of the Eaathd the stone is in rest. The
spring for want of it is stretched on any magnitidie

For expression of action on a body the force wasred. In the indicated
example the deformation of the spriAg visually represents the force of action.
By this term we designate a property of a humanytiodexecute any operation,
for example, to contract a spring.

The counteraction of the third body can be exgesst only by expansion
of a spring, but also by its compression, if it; é&xample, is located between by
attracted bodies. The third body can be not a gpand its the deformation can be
measured by deformation gauges or with the hefpexfoeffect. Besides the coun-
teraction of the third body can be expressed bgro#ittion. For want of meas-
urement of interaction of two, suspended on filarseocharged balls their devia-
tion from a vertical was counteracted by a graidgted! attraction to the Earth.

Historically it has developed so, that action ¢tvas begun to determine by

magnitude of a deformatiohl. The concept of a forc€ of action, which is de-
termined by magnitude of a deformatidh is created by standard action. The
scale of a force is constructed so that the uni édrce in any place of a scale
corresponds to the same action on certain starmatg Now for a standard body
the platinum - iridium cylinder by a diameter arglght 39 mm is accepted which
is kept in Paris. Being acted by the Earth it sttes a spring on certain length,
which expresses magnitude of a force in one kgh(tachnical system MKGFS).
So, the action of the Earth on the standard imphes it drops with an accelera-
tion of 9,8 m/set We circumscribe this action by magnitude forees £ 1 kgf.

If to join to a springy of the measurement standards, they stretch iiogth
equivalentn kg. And we speak, that the Earth influences thgra orce inF =n
kgf. Other body, which is under action, can stretqphing too om; kgf, i.e. asy
of standard cylinders. But such body, as well asle/other bodies, all drop with
an acceleration of 9,8 m/Se@hus, at acting on the different bodies with shene
acceleration the force of acting on them will b#fedent. That is, only one force
cannot characterise action on a body. Thereforeassnof a bodyn = n — as
amount of standard bodies is inputted when at mgtith an identical acceleration
these bodies stretch the spring on the same magnias body. Then for any ac-

tion, which is measured by magnitude of fof€e on any body, which is equiva-
lent m standards, the acceleration of a body will be

W=98[F/m. (2.3)

The force has that a direction, as the accelavaigosimilar to it(him) and in
Space is characterized by three componEﬁn";.i*FX + TFy + IZFZ .

Unlike MKGCC in a system of a SI for unit of a fer& 1 Newton (N) is ac-
cepted which is characterized by such action orsthedard cylinder, for want of
which it is gone with an acceleration 1 m/sdn a system of a Sl a parity (ratio)
(2.3) in a vector kind will be noted so:
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w=F/m. (2.4)

Expression (2.4), known as the second Newton'sitasonsidered system of
units is fair for any actions. And as we see itvgga@ut of our choice of parame-
ters of action and units measurements. Similargyfifst and the third Newton's
laws are the corollary of our approach. For example first law: if other bodies
do not act a body, it saves rectilinear and equatdgement. It is a corollary of
initial determination of action. It is an ability one body to reduce in movement
the second body or to change its movement. Frongiven determination fol-
lows: if other bodies do not act a body it doeshdnge its movement and remains
in rest or is gone rectilinearly and is equable.

The third Newton's law is, that a force of actafrthe first body on the sec-
ond oneFy, is equal to a force of a counteraction of the addoody on the first
oneF,; and is opposite to it in a direction;

Fio =—Fa. (2.5)

This law is the corollary of determination of ader which expresses a counterac-
tion of the third body to interaction of two bodiddagnitude of a counteraction,
as in example a deformation of a spring, concenesfitst body, as well as the
second one. That is the same magnitude, which ha&svthe spring is directed on
bodies for want of their mutual attraction and frbodies - for want of their mu-
tual repulsion. In other words, the same forceiisated mutually opposite on
interacting bodies.

Here we will mark, that despite of expressionsstexg in custom, (the force
on bodies, directed force etc.) the force is neemse, substation, spirit etc. It is
entered by us concept for the description of action

So, the action on a body is exhibited in it anede@tion. The man expresses
and describes the action as a force and mass ofisidered body. In a selected
system of units the mass unequivocally charactedn@nection of an acceleration
of a body being under action, with the measuredefohree important conclu-
sions follow from here. At first, in all interactie a mass of a body will be the
same. Therefore it is senseless to search foragince between a gravitational
and inertial mass. These searches are reduceddiodi errors of a measurement
of same scales, in different interactions. Secgnidbm determination of a mass
follows, that it cannot be changed from other iat¢ion or movement. That is the
mass, contrary to accept in a TR, basically cadepend on a velocity. Thirdly,
the mass is peculiar only to that object, which gahacceleration in outcome of
action of the other object, and it is possible teasure this action as a force. As
for light, field, energy etc. given process is redlised, it is impossible to attribute
a mass by it. Thus, field, energy and the entergdes (photon, graviton etc.) do
not have mass.
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2.3. DETERMINATION OF FORCE AT DIFFERENT INTERACTIO NS

The acceleration of a body is determined by tloese law of Newton (2.4).
Its massm once measured, is known, and if the expressionaféorce F, is
known, then as the results of an integration oaeceleration on time a velocity
movements of a body is received, and after an iatem of a velocity - depend-
ence of a path of movement of a body on timEhus movement of the bodies is
determined completely, which are influenced by dtieer bodies by a forcé .

The forceF depends on properties of influencing bodies, aredd on a path of
movement of a body either distances between badjeslocity o and timet, i.e.
the force can be the functidd (7, ,t).

There are many different kinds of actions. For exanthe powder gases on
a shell in a trunk of a gun by a force act

F=SP, (2.6)

whereS - cross-section of a shel;- overpressure in a trunk of a gun.

In accordance with movement of a shell volume ofigeer gases grows/(= Sl),
pressure drops, for example under the isentropic P = const, and conse-
quently is changed with growtrso:

P =Py (I )¢

wherely - initial volume of powder gaseB; - their initial pressure.
After a substitution in (2.6) the following equatifor the force

F=SPR (I /), 2.9

which acts on a shell in a trunk of a gun, is reeei This force depends on a path
according to the exponential law. If instead of dewgases the spring would act
on a shell, within the limits of an operation oétlaw of the Hooke a force would
depend on a path bodies under the linear law.

According to from a trunk the shell goes in atniesge. If it a velocityv ,
and velocity of an air mediurid = U(x,y,j , in the elementary case spherical shell

by a radiug will be acted on it by the force

. pu-dl-o)
F =Cf — (2.8)
whereC - aerodynamic factorp - air density;f = Tr> - perpendicular to circu-

lated stream the cross-section area of the shell.
Nonlinearly aerodynamic fact@ depends on a velocity of a shell relatively
an air, its viscosity, grain of a shell etc. Thensley of an air is changed with
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height. The velocity of a windi also is changed along a path of a shell. Therefore

force F by a complicated image depends both on a pathtendelocities of a
shell and for its determination you will need knedde of practically all proper-
ties of atmosphere. With the certain approximatians simplifications these
properties can be given as a field of magnitudesliatmosphere, where the shell
will pass. By a sequential integration of an equrat2.4) the movement of a shell
will be determined.

If earlier we spoke about the action on a bodgtber body, in the last ex-
ample a shell during its movement is influenceddbferent parts of atmosphere,
i.e. many objects. Nevertheless, by determiningreef of their action on a body,
we can calculate its movement.

Let our shell supply with a jet engine, which oocanmand from the Earth in
any moment is included and with the help of jecéowill introduce it to orbit.

This force is a variable in timé& = lf(t). Thus we see that the forces can depend

on a variable integration , v, t, of the equation (2.4), i.e. from the parametérs o
the movement of a considered body. Except thatefalepends on a number of
properties, of interacting, objects. One of themali problems of physics is deter-

mination of these forces. The analysis of knowrtdsrshows that all of them are
determined in the results of a measurement. Meamnts, as a rule, depend on
many factors. At the beginning it is necessarydied a standard situation and to
make a measurement of forces in it. Then the ptigseare determined, on which

the similar situations differ from standard. Theasieres of these properties are
entered and the measurements of their influenaaagmnitude of a force in a stan-

dard situation are made. After fulfilment of suckasurements there is a possibil-
ity of account of forces in various situations.

If the force of action on a body is establishedl aluring movement is
known, it is possible to integrate the equatiod)2As the results the movement
of a body will be determined completely. The saatdf a problem of interaction
of two bodies or actions on a body of many bod@sststs of it. It is obvious, the
force method consists of three stages. At the Inéggnwe find a force of action,
being completely based on the results of measuresman the second stage we
determine the correspondence between a force imhash a body and its accel-
eration, i.e. measure a mass of a body. At thel tsiage we consider the move-
ment of a body regards to a known acceleratiospite of all this the experimen-
tal results are not attracted.
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2.4, ABOUT DEPENDENCE OF A FORCE ON AN ACCELERATION

Because of theoretical reasoning in an electroayrgthey have entered the
force, which depends on acceleration. For examplenany monographs both
textbooks, including [26] and [97], the expressfon electric field strength of a
moving chargey; is resulted. Using it, we will note the magnituafea force of
action on a motionless chargg

F :—(%W{(l-ﬂz)(ﬁ -+ -/?rt)x;’/cz} , (2.9)
e\ —h

where B = v/c - dimensionless velocity of a chargg & - its velocity relatively a

chargeqy; ,B:E/c— dimensionless acceleration of a chagger; — - position
vector from a chargg, up to a charge, in an instant ', taken with " by delay ":

t=t-r./c. (2.10)
This expression follows from the Lienar-Viherttarded potentials and has

been known in an electrodynamics since XIX centurigpparently, by analogy
with (2.9) W. Weber [123] was offered the followirgpression for forces:

F :ﬁér(l— 0587 + r,G’/c). (2.11)
er

Recently formula of Weber attracts attention ofngnacientists [80, 124,
125]. Toma<t. Phipps [107, 108] has offered similar express$iora force

F=h | g2y T pl (2.12)

which also depends on an acceleration. The abovgioned scientists intend to
advance a new electrodynamics alternate to a ThaefdRelativity.

The forces dependent on acceleration were entdsedin a mechanics of a
liquid. It is supposed, that on a particle by antbgerd, if it is gone with a velocity
U is acted by the force [27]

mip di_ 3d2p () [l ) du
0

F = -3mpudii - —dr, 2.13
AV T o 2 P (2.13)
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where g, - density of a liquidy - its kinematic viscosity.

The first addend in the right part representsregfof Stokslfs, which really

acts on a particle that is confirmed numerouslyekperiments for want of small
Reynold's numbers. The second addend is namedszg'Bdorce, and third one -
force of joined masses. Expression (2.13) is obthitheoretically for want of

consideration of local interaction of a sphericattigle, which is gone in a liquid

with a relative velocitys . Then the obtained results were indicated to acits|

U of a particle relatively undisturbed liquid.

So, the forces dependent on acceleration are insdifferent areas of me-
chanics. However there are scientists, who disagitreit. For example, Richard
A. Valdron [121] has proved, that the dependence foirce of acceleration con-
tradicts the second Newton's law, An@d'. Assis [81] has shown that the force
of Weber (2.11) leads to paradoxical results. Nredess in a holding controversy
[114] he has acted as the supporter of a forcesragmt upon accelerations [82].

The dependence of a force upon acceleration fisdamental significance.
Here the question is not limited by, whether thare these forces actually, for
example forces of joined masses and Basse (2.L3)eee are error forces. The
dependence of a force on acceleration in an ekiatamics in the form (2.9)
hereinafter results in submissions about a radiaifea moving charge, power loss
on a radiation and braking of a charge by thisatholi. These conclusions are
applied to an electron, moving on orbit around ghdrnucleus, because of that it
was concluded, that, the electron moving with aegion should lose energy,
therefore has inevitably to "fall" on the nucledsst for this reason the planetary
model of atom has not received further developmalhtphysics of microcosms
hereinafter was developed in the direction of éngathe mathematical probability
models of elementary particles, instead of studpgsic nature of microcosms.

Why cannot the force depend on acceleration? Bwanthis question, at the
beginning we will adduce R.A. Valdron's proof, bydifying it. From expres-
sions for a force (2.9), (2.11), (2.12) and (2.&3% visible, that it is possible to
note it as follows:

F = AB(r,o,W), (2.14)

whereA - general multiplicand for all component forcest dependent from ac-
celerations. For expressions (2.9), (2.11) and22riultiplicands A=q, g, /¢,

and for a force in a liquid (2.13 = g.. MultiplicandsA are not only general for
all addends of a force, but contains also parameterm which the multiplicand

B does not depend. The last condition is indispeegab a further conclusion.

For a small value of acceleration, by decompoaimgultiplicand B (r, v, w)
in Teilor series on degre®s we can note the term of series with numikesm ad-
dend
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lfzb{éo+l§'w+%wz+...+$wj], (2.15)

where L3>0 - significance of a multiplican® for want ofw=0; B, B",...,.BY -

derivatives fromB onw.
If the force (2.14) depends on an accelerationorethen it is necessary to de-
compose a force on components of a vector in thlerTumber.

For want of above marked conditions the expres&dib) is general and fair
for interactions for want of any change of magnétsi@f parameters, from which
the multiplicandsA, B and derivatives depend', B",...,BY . At action on body

of force (2.15), according to the second law (2tA)jll get acceleration
w=F/m. (2.16)

We will change parameters of an influencing objedtich enter only in a
multiplicandA so that the forcd= has increased in times. For it is necessary to
increase a chargg of an influencing body im times for forces (2.9), (2.11) and
(2.12) or density of a liquigp, for a force (2.13). So, for want 8§ = n A a force

will increase also im times:F, = F n. For want of the same mass of a particle and

constant distance and velocity the acceleratioopraing to (2.16), for want of
increased force will increase imtime too:w; = n w. The expression (2.15) is gen-
eral, therefore it should be fair and for the clexhgarameters of interaction, too

. . . B B(I)
F = Al BO+B'\/\4+7\/\;12+...+_—v\ll . (2.17)
After a substitution of significanceﬁl, A, wy in (2.17) is received
B - BO
F=A By +Bnw+=—-n WP+ +——nlw |. (2.18)

However expression (2.18) will not be agreed esgiom (2.15). Therefore,
or the initial expression for a force (2.14) isamect, or Newton's law is incorrect
(2.16), from which an acceleratiom is determined. Connection between force
and acceleration (2.16) is stipulated, as we werwioced, by the determination
concepts of a force, mass, acceleration and ufitiseer measurement, and there
cannot be the other one. In that case the depeadsra force up on acceleration
is the error (see also [113, 114]).

It is uneasy to be convinced, that each the foam(2.9), (2.11) and (2.13),
subjected to the same procedure, conflicts tofitdeineans, for want of applica-
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tion of forces dependent on an acceleration, ab®sults are inevitably received,
for example, acceleration in the plane capacita oharged particle up to an infi-
nite velocity [82] or unlimited self-acceleratioi @ charged particle even in the
absence of action on it from of the other bodieg &74 in [26]).

At the beginning of article R.A. Valdron [121] rkar that some authors,
including V. Ritss, consider dependence of a fance velocity and its maximum
derivatives. Such submission has development latelwever in application to
other magnitudes - strengths of electriealnd magneti¢i of fields. Let's remind,
that the strengths are forces normalized to aafrgtectrical and magnetic charges
accordingly. As the electrical field is proportibria a velocity of a change of a
magnetic field, and magnetic - velocity of a chanfan electrical field, in case of
movement of a charge with a variable velocity manthors desire to enter fields
of the higher order, which would be determine byximam derivatives from a
velocity of movement of a charge.

So can a force depend on a derivative of the favoea higher force than
acceleration? R.A. Valdron, supposing, that sugteddence is possible, the does
not proof anything in its support or against.

As we already considered, force of action on aybmu its acceleration are
different expressions of action. Basically, the aliggion of interactions can be
executed and without a force. For example, letasime we want to study the
action of a spring on an aluminium ball in a diagnetf 1 sm. We can measure an
acceleratiorw of a ball for want of compression of a spring oagmitudex. By
conducting a series of experiments for want ofedéht compression of a sprirg
we will receive the dependence of an acceleratioa ball on compression of a
spring:

W = Wi(X). (2.19)

The equation (2.19) already allows to decide dler of action of a spring
on a ball. The first derivative from transition time is a velocity ball

= (2.20)

and the second one is it an acceleration

_:__:1)_:\/\;161()()_ (221)

The solution of a system of the differential edurad (2.20) - (2.21) will pre-
sent a change of a path and velocity of a balinreti.e. we will receive the de-
scription of its movement.

For an aluminium ball in a diameter of 2 cm theneaneasurements can be
conducted and received dependenggx). For a leaden ball with a diameter 1 cm
this dependence;(X) also can be obtained. The dependence for actielesaf
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other bodies can be similarly measured and witth#ip of the equations (2.20) -
(2.21) their movements are designed.

This forceless method of the description of intéoas can be upgraded if to
place the correspondence between an acceleratialuminium balls of different
sizes as factdf, (d). Then on dependeneg,(x) can determine an acceleration of
a ball in a diameter af =n (cm):

Wi(X)= Ka(d) wia(X).

The same correspondence is determined betweefestoms of a leaden
ball and aluminium one. This modernization can isributed to balls from other
materials, on bodies of other form etc.

The usual method of the description of interactiaith the help of forces is
even more general modernization of the considerethaal. Here acceleration is
measured only for one body-standardvkg: F, and we call it with a force. The
acceleration of all remaining bodies is recalculatéth the help of factor of the
correspondencm, which shows, how many times for want of the satt#on the
acceleration of a body is less than an acceleratfaihie measurement standard,
i.e.w=F/m.

So, the force of action on a body is its acceienabut expressed in other
units. Therefore, naturally, force of action on buely can depend neither of an
acceleration of a body, nor of a derivative of aoederation in time. In this con-
nection all forces, which depend on a derivativa @€locity with time, cannot be
measured. They are entered theoretically and arertior. The nearest physics
problem is the analysis of influence of such foreegreatment of natural phe-
nomena, it correction and creation of new submisatmout the world around.

Especially it is necessary to mark the expresgom force (2.9). It is intro-
duced from the equations of electrodynamics, whidhbe as shown further, by
generalising of experiments. But this expressiqrasents a force or acceleration
in a period of time, previous considered, in acocaydvith the equation (2.10).
Thus, (2.9) may not be used for calculation of e#yoand and path of movement
of a body which it is acted. That is, in essenke,axpression (2.9) does not repre-
sent a force, which can be used in the second fameohanics (2.4).
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2.5. FORCE AND ENERGY

In mechanics for performance of action on a bdaydoncepts are entered:
work, potential and kinetic energy. If a body ifluenced by the other bodies by
forcesFy, F...., F, (Fig. 2.1) and the body durirdf moves in a pathl, the scalar
product of component forces on this transitionailed as work:

Fig.2.1.Forces of action on a body of several bodies.

F\ F

dA=F di +F,dl +..=) Fdl . (222
i

Iy By analogy to household activity they say,
) dl that the influencing the bodies perform the job
duringdt. For a final space of timethe work of

influencing bodies will be
t t — t
_ . - odl -
A—IZF, di -ZIF, Edt-zi:jﬁ sdt, (2.23)
0 0 0

i.e. it is determined by the sum of scalar prodacting forces on the velocity of a
body.

During the of realization of this work with inflneing bodies something
happens, for example horse loses a stock of vitalek, and the tractor spends
fuel. It is accepted to name such process as ptnssrof an influencing body,
which is spent for fulfilment of work (2.23). Th@ent energy as though poten-
tially contained in interacting bodies, therefarésicalled potential energy and
is equated to the work with a converse:

t
U :—A:—Zjﬁ, adt . (2.24)
io

As the results of action the moving body gets @aig} v . By movement it can
realize any action, for example accelerated shethé results of impact can de-
stroy a wall of a building. Therefore they say titiee body has a kinetic energy

E, =——. 23)

Entered magnitudes of work, potential and kinetiergy allow to consider
the process of interaction in other concepts. Nbaedss this method completely
follows from a method of forces, as you can seeweln case of action on a body
of several bodies we will note the second Newtdawvis
(2.4) as follows:

m® - Z F . (2.26)
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Let us multiple the left and right parts (2.26) ®@and conduct some sequen-
tial transformations
2
) -—

ms%:zi:ﬁ,a; mjr)dazzi“jﬁ,adt; L Zjﬁ,muc, (2.27)

whereC - independent of time constant of an integration.
With allowance of determinations (2.24) and (2.2f) last expression will
be noted in this way:

Ei=E.+U=C. (2.28)

The sum of a kinetic enerdy. of a moving body and potential energyof influ-
encing bodies is named as full mechanical en&igyf interacting bodies. Full
energy of interactiol;, as(how) is visible from (2.28), is not changediine and
remains a constant during interaction. In physicsenergy conservation law is
called the law of nature. However we know, that é@ation (2.28) is stipulated
by the second Newton's law and is the corollargwfapproach and our choice of
concepts. The fact that the law preservations athaeical energy (2.28) is not
the law of nature, but the corollary of our methafdthe description of interac-
tions, does not reduce its significance. If it Wlas law of a nature, as, for exam-
ple, the law of world gravitations or Coulomb's Jaand it was obtained as the
result of a measurement of properties bodies, itlavdbe possible to doubt of its
universality and exactitude. The fact that the lavstipulated by our approach,
testifies that it should be executed with an alisokxactitude at any circum-
stances.

At a derivation (2.28) we considered a beginnifig atnovement of a body
from quiescence. If the body has an initial velpaig, as the result of an integra-

tion of expressions (2.27) we receive
2 2 ! t to
me me - _ - =
o= Z.[Fi adt = ZJ'F, vdt—ZJ'F, sdt=—(U -Up),  (2.29)
it i 0 i0

that is possible to note as:

AE;= AE. + AU =0, (230
i.e. the increment of full energy of interactingdis during movement is equal to
zero.

At presence of actions on a body it can move @&irestant velocity: for ex-
ample automobile actuated by sprockets, or plarie avjet engine. In these cases
the influencing objects are counteracted an aia logsistance to movement. As a
velocity is not changed)E. =0 and, the potential energy is not according to
(2.29), is not changed, either that is ] = 0. However energy of fudlE; is
spent. It is spent for heat of an air and surfdca loody, i.e. is selected as energy

AE; = — AE;. Supplementing an increment of full mechanicalrgpeccording to
(2.30) with magnitudeAE; andAE;, we receive
AE; = AE. + AU + AE; + AE; =0. (2.31)
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As the increment of each component concerns aialimibd final position of the
acting bodies, for examples; =E; — Eg, the full energy in a final condition will be
noted according to (2.31) as

Ef=E6+U+Et+ET :E50+U0+Eto+ET0=C. (232)
That is the certain energy thus remains constamglinteraction.

The connection between mechanical energy and thésmatablished as the
result of diverse measurements of an amount of $elatted during fulfilment of
mechanical work. It is expressed by mechanicalved@int heats; = 4.187 J/cal,
or 427 kgf-m /kcal. Energy, selected by fuel, during combusi®measured as a
thermal energy. Thus, all kinds of energy as tlsailte experimental standardiza-
tion are compared to mechanical energy. Therefosggy conservation law be-
comes applied both for mechanical, and for therroagmical and other kinds
energies, which are subjected to experimental cosga

So, the energy conservation law is our approaciead of the law of nature.
Especially it is important to remember during cdesation of the new phenom-
ena. The preservation of energy is stipulated bgsmements. If the phenomenon
leaves frameworks, in which the measurements wenelucted, the defiance of
the law is possible. Such violation happens durm@asurement of a thermal en-
ergy selected in the reservation after the impéagti@rcing shells: it exceeds ki-
netic in 1.2, 1.48 and 4 times when the mass dfedl & 0.0615, 0.085 and 4.05
kg, accordingly (lavorski V. Energy “from nowherg”"Science and life. - 1998,
10.-Pp.78 - 79). This violation is stipulated byakulation of selected heat in
mechanical energy with the help of equivalgnt 4.187 J/cal, which was meas-
ured during transition of movement in heat with tiep of friction. As we can
see, during high-speed impacts a mechanical equivalf a heat is different and
additionally depends on a masses: in the indicatesgs it drops with magnifica-
tion mass of a plunger= 3.5, 2.8 and 1.05 J/cal.

In modern physics the power methods of accountant®ns predominate:
the transfer of energy between interacting bodrasisitions of object to different
levels of energy etc are considered. There is ggoént that power methods are
more general. In order to prove this statementribeement equations are derived
from the law of energy conservation.

However, the initial equations of a mechanicdfal same are. The equation
(2.28) for energy is obtained in the results ofiategration of the equation of
movement (2.26). Differentiating (2.27) (namelyveas done the derivation of the
canonical equations of the Hamilton by minimizatafraction), we will naturally
receive the equations of mechanics. The concepteeghanics: velocity, accel-
eration, force and mass are initial ones. The quiscef energy and power equa-
tions are based on them. These basis are immed@iahected with the meas-
urements properties of the world around, theretloeeinformation of a problem in
all vague situations to initial mechanical concegitews to make clear problems
and to find truth.
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CHAPTER 3

THE BASIC PRINCIPLES OF THE DESCRIPTION OF
CHARGED,
AND MAGNETIZED BODIES INTERACTIONS

3.1. INTERACTION OF THE MOTIONLESS CHARGED BODIES

As it is known, originally electrization of bodiésreceived by friction them
one about other. After the other methods of degivalectricity have become
known. But in all cases the emergence of elegricitbodies is characterized by
that the bodies begin to be attracted or to bellep&om each other. The influ-
ence of the charged bodies was studied by a meaeunteof its force, and as a
spring Coulomb used a thin wire, on the angle oictvithe twisting force of inte-
raction between two charged bodies was determiBgdxperience it was estab-
lished, that the forces of influence of the charfjedies against each other depend
on a distance between them. It has appeared,ttbfisame electrization of bodies
the force is inversely proportional to the squdra distance.

But as it is possible to make electric the sameadsodifferently, i.e. the force
of influence between two bodies at the same distaao have different magni-
tude, there was a necessity somehow to describaitudg of electricity. For it
they have selected an identical electricity of smaall bodies, which influence
each other by force in unit, if the distance betwtdheem is equal to unit. For ex-
ample, at distance of 1 m and the force 1 N theafrelectricity is named a cou-
lomb (K). If at this electricity of one of the bodies atlwme will have such elec-
tricity, that at the same distance the force oirtilfluence will be equady, of
units, the magnitude of electricity of the secondyy as was accepted, is equal to
numberg,.

Selected magnitude of an electrization has beeredaas a charge of elec-
tricity. If at of unit electricity of the second 8y the electricity of the first one will
be of such magnitude, that the force of influeneénmeen them at unit distance
will be q; of units, magnitude of a charge of the first bedly be equalg;. There-
fore at electricity of bodies, measured chargesandq,, the force of influence
between them on each unit of a charge of the lfiosty is equaty,, and for all of
d. of units of a charge will be equal to a prodggcty,. And as the force between
the charged bodies is inversely proportional tostpeare of a distand® between
them, the expression for a force at any distantasviector kind will be noted so:

F :"%R. 3.1)

This expression is known as law of the Coulombls Bactore is entered to
have a possibility to use magnitudes of chargebowit dependence from that, in
what medium there are interacting bodies. Usudléy magnitude of a charge is
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measured in any certain medium (in an air or inuvac) and factoe takes into
account a change of influence between the chargdied at location them with
the same electricity in other medium. In spite lué fact that the magnitude of
electricity is founded on a force of action betwdmdies, the magnitudes of
charges of bodies are not changed during changmgdium between them. Thus,
the action of the charged bodies against each,otiéch can have different mag-
nitude in different mediums, is described by thaatipn (3.1) by means of elec-
trical charges, which do not depend on a mediuns promoted the origin of the
estimation, that the electrical charges are sontenmhessence.

From considered it is visible, that the chargedsany essence or substation.
This concept entered by the person, for the desmnipf the action of the charged
bodies against each other. The charged body cam day charge. If on the same
principle the description of gravitational actiomsvconstructed, the similar mag-
nitude of a charge for each body would be cons&ny two bodies influence
against each other (at the same distance) alwaf@mty. Units of a charge for
gravitational action would remain the same. Fomaxa, it is possible to accept,
that the body with a mass 123 t has a charge dqGahs it will be attracted to the
same body by a force 1 N.

With the passage of time the word "charge" gotw sense. With applica-
tion of expressions of a type: there are charges,caanged charges, interact
charges - understanding a charge as the indepeadsence was advanced. With
discovery of electrons (as particles with an ideaitelectrical charge), the estima-
tion about existence of charges as some substatisiratified. The availability of
an electron with a constants property to influeandtself similar one always by
the same image, does not prove existence of elaktubstation. The introduction
of such substation is similar to entering the satims of weight or locomotive
traction caused by the Earth acting on a body erltitomotive acting on the
coaches. Despite "substation” and "action" areonbt the unequivalent concepts,
but also generally represent incomparable objdetssubstation for gravitational
influence as gravitons is entered in a modern pistddy analogy to electricity.

The submission of charges as the carriers of &attsubstation promoted
emergence of the statements about conservatioares, though the experi-
ments convince us about emergence and vanishiag efectrization. The opinion
about conservation of charges as substation haduced to the statement about
independence of forces of interaction of the chadrgedies from their relative
movement, which is erroneous, as it will be showloty.

The magnitude of electricity is changed at the gbdrbodies connected by
conductor and the certain changes happen in a ctgddor example heating.
The velocity of the change of electricity is entere

_dq
I el (3.2)
which is called electric current. That fact is imjamt at the approach to electrical
forces that there is an action of this body on reaghavailability of current in the
conducting body. It was established by experiemdd20land, Ahenvald, Roent-
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gen and etc. that not only change of electricitypoflies causes the accelerated
movement of the magnetized bodies as well as theement of bodies with a
constant electricity do, i.e. it influences themislpossible that many have begun
to represent current in conductor as movement afggs thereat.

Whether the charges or electrical substation medwther there are quan-
tums of energy and those similar hypothetical medélthis phenomenon - we
will not consider and review. There is a precisd aartain problem before us - to
have a possibility to determine interaction of dharged and magnetized bodies
in case of a change of their electrization and raigation or at their movement.
Such possibility can be reached only by measuremiattions of the standard
bodies against each other which is in the certairdition and by the comparison
of magnitude of the condition of considered bodigth the appropriate condition
of the standard bodies instead introduction of pective mechanisms of these
actions. So the standard action of bodies with slebtrization is measured for
the charged bodies when they are attracted witlfiotoe of one unit at a distance
of one unit. The magnitude of electricity as a geais measured for any body by
comparing its force of influence with the forcesténdard influence. It is neces-
sary to say that the magnitude of a charge can desuned by a comparison of
other properties of the charged bodies for exaropla comparison of parted sub-
stance at electrolysis etc. However all comparisoasased on units of electricity
defined on interaction of bodies.

3.2. PROBLEM OF THE DESCRIPTION OF INTERACTIONS
OF THE MOVED CHARGED BODIES

The force of interaction of two motionless charpedlies is expressed by the
equation (3.1). It is enough to know force and n@ssach bodiesy andm, for
the evolution of their accelerationg andw, and consequent movements. But
when the movements of bodies begin, will the magldtof a force be described
by the equation (3.1) or will it depend on a vetpdf their relative movement?

Before answering this question let's consider hbwduld be possible to de-
fine dependence of force on velocity of relativevemment of bodies. If the force
of their influence against each other can be measat resting bodies by a spring
located between them then the spring can be joiomdy to the second body in
case of movement of one body. The moving body reilllize its movement and
the motionless body which is under its influencd deform a spring, the second
end of which should now be joined either to instédn or to the Earth. The mag-
nitude of deformation of a spring represents thgniiade of force from the mov-
ing body on the motionless one. And as factor efdbrrespondenam is known
(unit of acceleration of the motionless body cqomerls tom units of force) then
acceleration of movement will be also defined bg theasurement. If the spring
is unconnected then the body will begin to movehvtitis acceleration relatively
of that body which was connected by the secondoénle spring i.e. in relation
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to the Earth. Therefore acceleration determinetthismmway represents a change of
movement of a body relatively of the Earth.

Measuring the force on a motionless body at varmelecities of a moved
body in this way it is possible to receive expresdor the force and, consequent-
ly, for the acceleration of movement of a motioslbsdy depending on the veloc-
ity. But the moved body tests influence of a mdess one, too. Is it possible to
define its acceleration?

Deformations of a spring pertain both to one arel dther body in case of
motionless interacting bodies. It is enough to krfowce of their influence for
defining the accelerations if masses of bodiekaosvn.

Can we tell that the spring’s deformation, whichmade by a motionless
body, will also represent force on moved one andsequently, express its acce-
leration? It would be possible to answer this goesby a direct measurement of
the force on a moved body.

It is necessary to connect it with more massiveybadhich does not change
interaction with motionless body and move with reseey constant velocity rela-
tively of motionless one, by a spring therefore.we don’t know such measure-
ment we will be searching for the answer to thestioa being based on the indi-
rect facts. Each from two motionless bodies orillyriaegins to move accelerately
in the outcome of interaction. The forces causirmy@ment of the first bodk,,=
myw; and movement of the second dfig = myw,, are equal. Therefore accelera-
tions of the bodies will be inversely proportiotal masseav;/w, = my/m;. The
point, which distances from objects are inversefypprtional to masse®R{/R; =
my/my), is known as centre-of-mass. It should move withacceleration in this
case. This statement is confirmed. From what i€esl in all cases of movement
of such bodies in nature it follows that their certf-mass goes evenly and linear-
ly or rests in case of absence of external infleemic bodies of a system. Due to
the stated fact we come to the conclusion aboutléguwf forces with which two
objects interact one another in case of theirikgahovement.

We remind that the statement about equality ofdsris a corollary of de-
scribing the method of interaction in nature bycés but it is not the choice of
nature. The method excludes existence of diffeiremhagnitude forces of action
on each of two bodies.

So knowing masses of bodies we can calculate aetiele of moved and
originally motionless bodies by measuring forceniagnitude of deformation of a
spring by a motionless body. And magnitude of farae depend on a velocity of
a moved body, but we can define acceleration ofdsodnd, consequently, clarify
the whole motion pattern by considered method ribebss.
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3.3. CHANGE OF INTERACTION FORCE IN CASE OF
MOVEMENT OF CHARGED BODY AND MAGNET

If the body with the chargg, move with velocitys in regards of the second
one with the chargg, that these bodies will interact, putting each ptecelera-
tions. We could define dependence of force on wgldxy measuring the forde,;
of action of a moved body on a motionless one.h&ssimilar measurements have
not been conducted we consider results of otheergeqpce whereby of which it is
possible to calculate the action force of a movedrged body on a motionless
one [112, 113, 115, 116].

Let's begin with experience in which the actiomwived charged bodies on
a magnet was studied (magnet means the magnetotBddy electromagnet). If
the motionless charged body does not influencehenntagnet then there is an
interaction between them in case of movement wbtiof the magnet. This inte-
raction was studied by experiments about the infleeof the rotated charged ca-
pacitor on magnetic arrow, which were conducted@byroland, A. Ahenvald and
etc. It was compared with action of the capacitbere a current passed so that
the direction of the current was in according witbvement of the charged plates
of the capacitor. In the issue it was establishedl the action on the magnet by the
rotated charged capacitor is equal to the actiotih@fcapacitor with such current
under which the change of a electric charge happennit of time, equal to a
change of the charge under rotation of the capaditus outcome proves that the
action on a magnet of a body with changed eletgridepends on velocity of a
change of this electricity, i.e. depends on curreatdg/dt . Therefore the force of

action on a magnet depends on curtdmespective of that whether the change of
electrical force is expressed by current owingumrent of conductivity or owing
to movement of a charged body. So, the change @&lectrical force of action
from a moved charged body expressed by culressults in emergence of a force
of action of this body on a magnet.

We will consider the second experienced fact, a@tlwthe force of action of
conductor with current on a magnet was measurdterBnt scientists, including
Oersted, Ampere etc, accomplished the experimantaction of conductor with
current on magnetic arrow or magnet at differemfigurations of bodies. Laplace
has founded, that the action of conductor with enfron a magnet decreases in
inverse proportion to square of a distance betviieem. Due to these experiments

the expression for an increment of strengtH , created by a part of conductor
with lengthdl, currentl and distanc® from it up to magnet as is obtained

dH =$[drx§], (3.3)

which is known as Biot-Savart-Laplace's law. Héteepresents the magnitude of
a force on a unit magnetic pole.
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As the influence of a moved charged body can beritbes! by current, the
expression (3.3) describes also its action on anetad he magnitude of action is
determined by what magnitude of curréntill represent movement of a charged
body.

But the magnet, in its turn, at movement influeneeharged body. The de-
scribing this action equation is founded My Faradey because of experiments, in
which the movement of a magnet was made relatigélyonductor. On extremi-
ties of such conductor there were charges, whicte wletermined as a potential
difference. It means emergence of a force of thi®mon a charged bodyj, if it is
located on a place of conductor. A residual of ptitéés on extremities of conduc-
tor in the experiments was measured, instead ofottee on a charged body, as it
is required at our consideration. However the ¢ast be calculated on a potential
difference.

The magnitude of an appearing charge on extrenofieonductor depends
on maghnitude describing action of a magnet on atiegnet, and of a velocity of
movement. The electricity on extremities of conduciccurs as well at motion-
less magnet, if the force of its action to othegnet is changed. For example, the
electromagnet, in which winding the current varigisp creates a charge on ex-
tremities of conductor.

As in the first case of a moved constant magneasso the second case mo-
tionless one with changed magnitude of a magnéiizathe magnitude of an ap-
pearing electrization in conductor could be foundegending on a velocity of

change of strengthi in a conductor place. The directed electricity wasasured

on magnitude of current in the closed conductimguit, and the strengthi was
considered through a magnetic flux, which is takplgce through a circuit, as
follows:

@ = puf Hds, (3.4)

where u - the magnetic permeability describing a mediumesghthere is a con-
ductor.
In the total the dependence of electricity on @o#y of a change of a flu@

magnetic strengttH through this circuit was installed. The given eéprahas a
title Faraday's law of an induction has a sight

__1do

=-——. (3.5)

Hereu in a system of units CGC represents an electramdtirce in the closed
conducting circuitc - speed of light.
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So, there is an actianon a charged body, which in the equation (3.5) is
stipulated by a velocity of a change of action omagnet in that place, where
there is a charged body.

We have considered three experimental facts: d)atttion of moved
charged body on a magnet is equivalent to curidnfprces of action of current
on a magnet are determined by the law (3.3); 3attien of a moved magnet on a
charge are carried out according to expression).(Bl&w let's come back to con-
sideration of action of a moving body with a chacgeAt its movement there is
an action on a magnet, which depends on a veloéity change of action on a
charged body in a place of a determination of armaagdrhis position is expressed
by the equation (3.3). But at movement of a chatysdly the action on a magnet
will be changed and, as the expression (3.5) itestiin that place there will be an
action on a charged body. The given action is pitigrwal to a velocity of a
change of magnetic action, which, in its turn, adow to the equations (3.3), is
proportional to a velocity of a change of electriaetion. Therefore jointly equa-
tion (3.3) and (3.5) express that fact, that frormaved body with a chargg
there is an additional action on a motionless bwilly a charge), dependent from
a change of main action, which forms by a bqgdin case, when it rests relatively
of a bodyqp.

From the above mentioned experiments follows thatéaction of a moved
charged body on motionless ones does not happieiasnteraction at rest. In all
three experiences the electrical and magneticrecti@cur at availability of rela-
tive movement of two interacting bodies. For exaampt a magnet coil there will
be current only at relative movement of a magnéjoiat movement of a magnet
and the magnet coil with any velocity and in re@atio any bodies there will not
be current in a magnet cail, if there is
no movement of a magnet relativel ¥
of it. Therefore, the interaction of twc
charged bodies depends on their rel
tive velocity.

Fig.3.1 Action of a moved point body
with a chargeq; on a motionless point 0
body with a charge.

At definition of a charge the unit

of charge was accepted such electric: :
ty, identical at two motionless bodies, at whickytat distance equal to unit de-
formed a spring per unit of a force. But at avaligbof relative movement of

these bodies the magnitude of a force depends wiogity. So bodies on that
distance will influence each other by force, distifrom unit. As this magnitude
of a force determines charges of bodies, the athes will become their magni-
tude. Thus, at availability of movement of chardesties the magnitude of a
charge is changed. In an electrodynamics it isgedeto consider the magnitude
of a body charge constant. In this connection impfaman's and similar experi-
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ments on a change of the attitude of a chargemiass of electrons and other par-
ticles they came to a conclusion about a changenoéss of these particles at their
movement. But as the action depends on movemegitera conclusion is errone-
ous. Kauphman's experiments confirm a change ohage of a body at its
movement, however in physics it is accepted to idensnagnitude of a charge as
a constant. Therefore hereinafter we will suppaseonstant, but take into ac-
count, that the magnitude of a charge is determaretbrce action of motionless
bodies.

3.4. DERIVATION OF MAXWELL'S EQUATIONS
FROM THE EXPERIMENTAL BASES

For defining the action between relatively movedlibe we will enter a
coordinate systerr, y, z (see fig.3.1), in which coordinates relating tonaved
body with the charge,, we designate, y,, z; accordingly. Leto (X, Yo, Z) iS @
density of electricity, which with the help of clgarof a body is determined as

o =[pdv, 3.6)
\%
whereV - volume of a body, and the voxel is equal
dV = dx,dy,dz, (3.7)

The volume elemerdV has a chargdq, = pdV and influences a chargp
by a force according to Coulomb's law (3.1). In&tigng it on the whole volume,
we receive

= _ % (R
F—-ijsmA (3.8)
where R= F(x, 2 z)—F(xq,yq,zq)- a position vector from a chargg to a charge
.. After an integration of (3.8) the forcEé will be function only of coordinates
of a chargey, i.e. F =F(x,y,2). In any point of coordinates it is possible to lo-

cate a bodyy, and to define a force. In mathematical sense dheefF can be
considered as the function of coordinates and egpb it all mathematical opera-
tions.

Included in integrand expression (3.8) multiplicarl?éj/R3 can be noted as

R/R® = -gradl/R), (3.9)

where in operation of a gradient the derivationasied out on coordinatesy, z
With allowance for (3.9) force (3.8) will be:
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F= —q—zjgra{éjdv . (3.10)

&
\

Let's find a divergence from the right and lefttpdB.10) on variables y, z

dwﬁ=—9£jm{gm{ﬁﬂdv=—9£jéﬁdv. (3.11)
SV r 5Vr

Let's take advantage of the Poisson's theorencédaisfunctionJ:

u=-—+[2%v. 13)
47'[V r

With allowance for (3.12) the expression (3.11) ailcept with a sight:

divE =282 3R
&

From the expression (3.13) it is visible, that desivatives depend on a force
on coordinateg, y, zfrom a density of a charge in this point. In essgithe equa-
tion (3.13) does not introduce anything new anteot$ a property of a charge
and its density as of force performance of action on a body withargeq,. It is
other form of an entry of the Coulomb's law, nandifferential, when the charge
of an influencing body is expressed as a densigl@dtricity p and is distributed
in space circumscribed by coordinatesy, z If Coulomb's law describes interac-
tion of two point bodies, the law of interaction andifferential kind (3.13) de-
scribes the action of charged bodies of any condiipn, which the density of
charge is set by its densjp(Xy, Yq, Z5)-

Some differential equations are of interest foriondess charges. For their
derivation we will take the operation rot from ttight and left parts (3.10). As for
any scalar function rot(grad) = 0,

rotF =0. (3.14)

Such distribution of forces created by motionlekarges, is named irrota-
tional. Now we will take the operation grad frone thight and left parts (3.13):
grad(divF) = AF + rot(rotF) = ﬂgradp .
£

With allowance for (3.14) these equations accegglat
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AF :Tgradp . (3.15)

It is named Laplace's equation and as well as &osgquation (3.13), is the dif-
ferential form of an entry of Coulomb's law.

We will consider the action of a moved body withreargeq; on motionless
second of},. At movement of a charged elemeiM of the first body happens the
time history of magnitude of a charge in points,tiomdess relatively of the
second body. That is relatively of it the currefitetectricity happens which is

dg;

determined as the velocity of a chande=s— m . Expressing magnitude of a

charge through a density according to (3.6) anfémiftiating, we receive

=%jpdv = 6" dv +J-d|v(pv)dV

Here integration is carried out on coordinatgsy,, z, of an influencing charge,,
instead of on coordinates y, z in which there can be a chamge The partial de-

rivative on time can be expressed through a fdtcaccording to the law (3.13):
9% __& GO (3.16)
ot 4m, ot

After a substitution of a derivative expression éorrent of electricityl, created
by a moved charge, is received:

(& oF
| = |div —+ o0 dV. 3.17
j [47112 ot pu]d (317)

As it was already mentioned, the moved charged tadthcts a magnet, which
according Biot-Savart-Laplace's law (3.3) is prajporal to current (3.17). Let's
transform expression (3.3) to distributed in space, zmagnitudes. With this
purpose let's integrate it for an infinite di-
rect conductor with curremt(see Fig. 3.2).

7 Heredl - element of conductor

V4

Fig. 3.2 Magnetic strength of an infinite
dl :
do conductor with current.

09 conterminous on a direction current, and

PANR H, 4 R - its distance up to a magnet. Then, with
J7; allowance of geometric equations

x [dI xR] = 7dI Rcosd
dlcos#=Rdg and R=R,/cosd,
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where T - basis vector of a tangent to a circle in a planendRs - the least dis-
tance from a point, y up to conductor with curremt the magnetic strength (3.3)
will be noted:

|__|_|rJ‘dIcosé’_|rJ‘ osgda =T (3.18)
7 cRo

-2

The vectorH is directed (see Fig. 3.2) on a circle, whereenirpasses in
the centre perpendicularly to its plane, and incdugesian frame it can be noted:

H :CZT:P(—Tsinqﬁ+ Tcos¢).

Magnetic strengthH - magnitude of a force of action on a magnetiepol
with a magnetic chargel = 1. Sources of an electrical force are the clarghe
mathematical connection between a density of clsaagd divergence of a force is
expressed by the equation (3.13). Let's definer@rgénce of magnetic strength:

AR, gy 2]
oy
As, Rp =4/x? +y? andsing =x/R, , cosp = y/R , after a substitution
of derivatives is received
divH =0. (3.19)

The equation (3.19) testifies to such charactea ahagnetic force, which
cannot be expressed as separate magnetic chahgesoiirces of a magnetic force
exist as two opposite magnetic poles - northernsathern.

The expression (3.18) can be noted as

27TRH —%r

i.e. the circulation of magnetic strength on a riguit is determined only by the
magnitude of current enveloped by an circuit. It can be copied so:

§H”d|" _At 10)
| C

Using the Stokes theorem for an integral on a ddsep, we shall write (3.20) as
follows:
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an
C )

and in the equation (3.17) for a curréntiith the help of Ostrogradsky- Gauss
theorem the integral on volume we shall expressuiin an integral on a surface:

g OF =
| = v pi oS,
J-(4m2 ot 'a)]d

After substitution of the curremtin (3.21) we obtain the following expression:

jrot HdS= (3.21)

rotH =———+—"= pi. (3.22)

This equation determines a force of actidn on a unit magnetic pole stipu-
lated by the moved charged bagly It is known as the second Maxwell's law [65,
96] and, in essence, is other form of an entryhef éxperimental Biot-Savart-
Laplace's law (3.3).

The actionH on a magnet arises in a place of a determinatfoa fody

with a chargeg, (see.fig.3.1). As the body, goes, the magnetic actioR is
changed. In according with equations (3.4) and)(B.% place of a determination
d. there will be an action on a charged body. In (3y consider the flux of

magnetic strengtid through a surfac8 resting on a circui, in which according
to (3.5) the electromotive foragis induced. It can be expressed through circula-

tion of electrical strengtle = lf/q2 as follows:

u=§dr :jrotidé. (3.23)
a2 a2

After a substitution in (3.5) and of the Faradey's law of induction accepts a
kind

Irotidé = —ﬂja—Hdé.
g, ct ot
As this expression should be fair at any integraadstio follows from here
rot— = #H (3.24)
g, c ot

which is known as the first Maxwell's equation.
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3.5. DIFFERENTIAL EQUATIONS FOR FORCES

As we can see, the first and second Maxwell's éopsare other form of an
entry of two experimental laws: Faradey's electrinduction and Biot-Savart-
Laplace's magnetic action of current accordinglychfarged skew body moving
with a velocity v, the density of which electricity, in according with the equa-
tions (3.24) and (3.22) creates these actionseléxclude magnitudél from the
equations, we receive one equation for magnitudactibn of a charged skew
body moved with a velocity), on a motionless one. With this purpose we will
take the operation rot from (3.24)

ro{roti} = —E%(rot I—T).

*P) c

Conducting sequential transformations of the laft pf this equation, we re-
ceive

graddivi—E:ﬂgradp—ﬁz—ﬁi(rotI:|). (3.25)
. 0 ¢ 0z c ot

HereA - Laplace's operator, and in the first addendii,ai expressed through a
4z

density of a chargp in according with (3.13).
Now let's differentiate in time the second Maxvgedijuation (3.22)

2_’ —
irot Fi :ia_F +4_”M
ot cq, ot? c ot

also we will substitute in a right member (3.25jteA transformation we have

- g 0°F _4 o(ov) 4
AF_':_Z e = ’ijqz (g))+ TZ gradp . (3.26)

Let's enter a label
C

Cq = 317)
1 '_,ue
also we will note this equation so:
- 1 0°F _4m,| 1 o)
AF——2 > = — +gradp|. (3.28)
c; ot & |cf Ot
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It is named as the d'Alembert's equation. This tguoiavithout a right member

1 0°F
c? at?

=0 19)

is named wave. It supposes [24, 52] private salstaf a type
F(r,t)=F (r)e™™, w=ke, (3.30)

wherek - any constant, defined by boundary conditionsp&cial case (3.30) is
the solution

F(xy,zt)=Fy cosaft F (kyx + ko y + kzz)/c +1,] , (3.31)

where, ki +kZ + k3 =1, to - constant of an integration.

The solution (3.31) represents plane waves, wkerk,, ks - direction co-
sines of a plane, on which the constant signifieaoica forcelf0 is saved. This
plane moves in space with a veloaity which is called a velocity of distribution
of electromagnetic interaction.

If the charged objects are motionless and are aoh§ = const), their ac-
tion on a charge;, is constant §F/at =0), the equation (3.28) turns to the equa-
tion of Laplace (3.15). For moved or non-stationelngrges the force of their ac-
tion will be other, it is determined by d'Alember¢quation (3.28).

As we already considered, the moved charged bdtyemces a magnet. The
equations (3.22) and (3.24) allow to define sudibaadepending on a density of
its charge and velocity of a body relatively of a magngt With this purpose we
will take the operation rot from the right and Ip#irts of the second of the Max-
well's equation (3.22):

rot(rot H ) =-AH + grat{div H ) + é% (rot If) + 4—: rot(ov) (3.32)

and differentiate in time the first Maxwell's eqoat(3.24)

ii(rotlf):—ﬂazF| .

g, ot c ot?

(3.33)

Excluding F from expressions (3.32) and (3.33), with allowaforg3.27) for the
magnetic action of moved charged bodies d'Alembguation is received
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H —012 e :—Trot(pa). (3.34)
CHAPTER 4

THE INTERACTION OF TWO MOVING
CHARGED POINT BODIES

4.1. D'ALEMBERT'S EQUATION
FOR A POINT CHARGE

If the size of bodies is considerably less thatadises between them it is
possible to consider such bodies as point ones Hefine a force with which the
z . point chargeq; moving with constant velocity

4 v actions on the other point ong (see
fig.4.1). The relative movement is considered:

9, the chargey, goes relatively the chargp. The

- chargeq, can be in any point, y, zin the car-

7, 4, v tesian frame. The chargg is at the origin of

0 the frame in the moment 0.
y Fig.4.1 To the derivation of d'Alembert's equa-
tion for a point charged body.

The charge densitg; can be written as a point object Byfunction [17],
which has the following kind in depending on thebnatex:

< 0,X# X,
J(X—X):%Tjexpi(x—x')kdk:{ o (4.1)
00, =

and

Id(x—x)dx=1. 4.2)
As it is visible &function has only one nonzero significance and &qual to
infinity in the pointx’, where there is the particle. It is equal to zerali other

points. However integral from thé&function is a finite quantity and is equal to
unit on the whole range of changes
The charge density; frame will be written in space by tlEfunction so:
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p= qlé(x—vxt)é(y—vyt)é(z—vzt), (4.3)

wheref =ix+ jy+ kz - the position vector of a space point;
Fy =10+ o t+ko,t - is the position vector of the charge
Then it is received after the substitution of tlkpressions for thé-functions

00

p=-1 J’ expifke(x =)+ Koy - vyt)+ gz v,t)] i , (4.4)

—00

where the integraljdk is triple ” dk,dk,dks . Taking into consideration (4.2)

it is easy to be convinced that the integral igtmnwhole spacr{pdxdydz =0,

where p is determined by the expression (4.4). Thus&Henction has allowed
distributing the point charge with simultaneousalaation of it in a determination
place of the chargeg; on the whole space. Now it can take advantagehef t
d'Alemberts equation (3.28) in which the non-staity electricityp density ac-
tions on the motionless chargg by force F . Further we will consider the unit
force

E=F/q,, (4.5)
acting per unit of the chargg. Following the tradition we will call it electrita
intensity. Let's rewrite the d'Alembert's equat{B28) in projections on axes of a
coordinate system subject to (4.5):

DEX:4_H a_p+i26_pvx :
£ | 0x cf ot

OE =4_”["_p+ia_pv }; (4.6)

2 2 2 2
where[= 6—2 +0_2 +0_2 —iz E-Ia—2 is D'Alembertian.
ox° oy° 0z° c° ot
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After the substitution of the charge density (4v® have for the projection

E,:
i @ .
E, =%_jm (- $2)k, - . s - BekJexsti nydk,  (@7)
where
r, = ky(x—0,t) + ko y —o,t) +ks(z-0,t), (4.8)
ﬁx_v_xy ﬁy:v_y, ﬁZ:D_Z'
c o} c

The x-projection of action force of the moved cleagg per unit of the mo-
tionless charge, determines by the d'Alembert equation. The foaramonent on
the axes andz will be similarly written.

4.2. SOLUTION OF THE D'ALEMBERT'S EQUATION

D'Alembert's opetrator does not depend on the variable integration
ki, Ky, ks in the right side. Therefore the equation (4.7 ba symbolically written
so:

E, :%_1[(1—135)& - Bubyko = Buia] explr)ak,  (49)

Whel’e I’V = kl(X_Uxt)+ kz(y _Uyt)+ k3(Z _Uzt) .
The intensityE, will be represented as an integral if it is define

Dtexp(ir,) =G. .19)

The functionG is called the Green's function. It can be discegdrom the equa-
tion now

OG =exp(iry). 4.11)

which is a second-order partial linear differenggjuation with a right side. Its
solution consists of the partial solution from tight side and a general solution
€G = 0. The equation solutio®G = 0 gives the solution from a zero charge densi-
ty i.e. it represents an electrical action from thro source. There is only one
chargeq; under the conditions of the problem in space. géeeral solution of
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equation without the right side is rejected: thargeq; action interests only. The
partial solution is searched as
G=Clexp(ir,). (412

Its substitution in the equation (4.11) determithescoefficient

1
kZ +KZ +Kk2 = (ks + Byko + Bk P

After the substitution of the coefficie@ in (4.12) Green's function will be the
following:

exp(i r,)

G=- .
k2 +kZ +kZ = Bk, + Byko + Boko ]

(4.13)

Substituting expression (4.10) in (4.9) by the @raection we receive electrical
intensity as the integral

=] - 82)ky - BBy ks ~ BBk
T 2e o K HKE G~ (B + Byky + Bks )

exp( r,)dk . (4.14)
Let's transform (4.14) by selecting the integratrthe variablé:

= —_I v"exp|[k2 y-oy )+ k3 zZ-v t ]Ildkzdkg, (4.15)

—00 —00

where

j[(l B ke - :Bxﬁyk2+,3xﬁzk3)]exp|(x ot) ke

ik, (4.16)
k- pikd - Zﬁxkl(ﬁykz + ﬂzk3)+ a

a2 =13 +12 ~(Byko + Brks) . (4.17)

The solution of integrals (4.15) and (4.16) is sidared in case of ve-
locity of charge movement not exceeding velocityi.e.

BZ =i+ g+ pE <1, (4.18)

The sign of expression is researchedaforin case of limiting signific-
ances of a velocity the quantitya’ is enclosed in limits froma? = k3 + k2 when
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B =B=0a :[kz(l—ﬁj)]/2 -kyB,1>>0to when g2 + g2 =1, i.e.itis posi-
tive.
We will rewrite the expression (4.17) as

= k21~ 2)+ K2l 52)-28, ok

It can be negative only when the third summandositive for examples, 5, k.
andks; have identical signs or in pairs identical sign& will find the increment
da? in case of chang@from (4.17):

da® = _Z(ﬁyKZ + ﬂzk3) (kZdﬂy + deﬂz)‘

It is easy to be convinced that the increnaft< O in case of these signs, .
is monotonically changed. And as the quartftys positive in extreme cases By
it is positive in the whole range.

It will enter the conventions:e =41-82; b= ﬁx(ﬁykz + ﬁzkg);
Xq = X=0,t, and{ —is a complex number. Let's consider the integnaa closed
loop in the complex plane

2
b
§—( ¢ -blexpixg o . (4.19)
81( -2b{ + a’

It is visible by these conventions that the integraxpression (4.19) coincides
with integrand expression (4.16) whér k;. The integrand denominator has zero
in (4.19) when

2 _ 2.2
$12 SRR L 5 2 (4.20)
e
where
b2 - a2 = —{ (k22 + k§)(1— ﬁf)— (8K, + /;st)z} . (4.21)

It is possible to show by the similar method tacase of the siga? proof
that b? —a%e? <0. Then after the substitution of the significantesa? e, in
(4.21) zeros of the denominator will be

_ ,Bx(ﬁykz "'ﬁzkii)i i\/(kzz + kg) (1_:83)_ (:Bykz +ﬁzk3) 2

- (4.22)
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It is known [24] that the integral on a closed Idike of (4.19) is determined
by the sum of derivations.;

§1(Orexptxg 1o = 2¢C.y

We will consider the complex integral (4.19) alamgircuit of a semi-ring with a
radiusR in upper half-plane of the complex varialfles & + is. The polel, i.e.
the special point in case of positive sign beforis in this half-plane by (4.22).
Let's divide the integral (4.19) in two componeriyg:the top-semicircl€g and

the horizontal diameter:
§ j j aric_y¢*). (4.23)

Its significance is written in the right side byetterivation/™.
The integral along a  semicircle with infinite rasliu

2,
lim ¢

—————expix,{d{ is equal to zero by Jordan's lemma, if
Romd ef¢® =20 +a? " | g
R

& -b
ZZZ -2b{ + a?
If X4 =X — 0 < 0 then the Jordan's lemma will be performednhim lower half-

plane and then the integral (4.19) is divided io t@mponents by the lower semi-
circle and the horizontal diameter:

§:2ﬂc_l(g—): j _i , (4.24)

_CR

Xq>0n I|m and is a final quantity, it willtake place in thiase.

Thus the integrals are equal to zero both alompgupemicircle in (4.23) and
along lower one in (4.24) and the integrals aldreghorizontal diameter change to
the integral (4.16) in the limit;

r

lim J. elZ ~ explqu [ =

v 2
Roe 6 ef¢ 2b(

From this solutions of an integral (4.16) will b@pidedx —o,t > 0

I, = 27iC_4({") and providek —o,t <0 I, =—27iC.4(Z") by (4.23) and (4.24).
Let's find the derivation of the pole in the uppatf-plane:
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csle)= im t(@)extlingie -¢7).
After the substitutioffi (&) we receive (4.19) according to

C. (Z) || (91( b)exF’('Xq()(Z Z) (efi+—b)exp(ixqz+)
e s - e-) T 211G k@)= 2]~ (s + k) 2

Substitutinge; andb here we can rewrite the derivation as

c.le*)= (1/2)exp{Xﬂlﬁx(fy_k;;r Brka)

ixgy [ +12)l- 2)- (. + ko) ?
1- 55
The derivation of the pole is similarly determiriadhe lower half-plane:

C_1(Z'): (1/2)exp|:XqﬁX(fik;: ﬁ2k3)+

(4.25)

+ ixq\/(kzz + |‘3?)(1_ﬁ>%)_(ﬁ)/k2 +ﬁzk3) ’
1- 55

After the derivations substitution in the significas of the integrdl we find:
providedx > v,t

(4.26)

k K
I, = 7iexpi(x—v t\ﬁXﬁyl2 ;fxﬁz S x
xexg - (x-o t)><\/(k22 +k§)(1_'83)_(ﬁyk2 +Biks)?
X 1—ﬂf ,
providedx < vyt
k k
I, = —7iexpi(x - t\'BX’Byl2 -;f"ﬁz 3 x
x exp(X = vyt)x \/(kzz i kg)(l_ﬂx )_('Byk2 +Bks)
X 1_5)(2

The general integral expression for both casedeanritten as
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—|X—vxt|><

Il:n._ X—o,t ex i(X—Z)xt :8 (IBykZ ﬁzk3)
|X—vxt| 1- ﬂx

)b ) ey i)
1-B?

After the substitution, in (4.15) electrical intensity will be written so:
E—ijexp yvt+ ,8,8 k, +
O 2mElx-ud| 2 ,8 Py fat
X—v,t |X_vxt|
+lZ-o b 2 ByB; Kz |- 7 % (4.27)
1- IBX 1- IBX

— k2 +k2) (- B2)-(B,%, + BK,)?
X\ 1= - Y z dk,dks, .
J1- 5 ﬁyJ Ty

Let's enter new conventions:

Ly = Y=oyt 4~ ﬁ < .8, (4.28)

Ly =z-o,t +’1‘:_;’;X2t/3x/32, (4.29)
. o

a Jl-ﬁf —ﬁfl—_ﬁgf(; BB @
= Ay £ A, (4.32)

uz% 1- B -B; >0 (4.33)
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and also replace variable
s? = (k, —ksA, )(kp —ksAL)>0, (4.34)

n= k2|_2 + k3L3 . (4)35
As at changéd, andks in one of the half-planes, for examplekg<wo, —co<ks<oo,
new variables, n pass all their values, for examples®s, —eo<n<eo, at integra-
tion onn ands the value of integral it is necessary to double.

The substitution of new conventions (4.28) - (4.8%)(4.27)
conduces to the expression for electrical intensity

_ Oa(X vt
E, = W j jexp[ i(Lok, + Loks) - ug dkydks . (4.36)

Let's define an element of area in the new varinlards. As

(as on _0s on

dk,dk ,
Ok, Ok, Okg 0K,

then considering (4.34) - (4.35) we receive

dsdn = dk2<dk3 [kz(Ls + LzAg)‘ ks('—sAg + LZAZ)]* (4.37)
where
2 2
1-p2 - g2 __ BB
s o _p2_ p2
p2 = PB o+ 21 fx b (4.38)
b-p2-52) 1= =B

It will expressk, andk; considering (4.34) - (4.35) tsandn:

Kk, =5 —k 4)39
2= 3L2 e

s? = k5 —2kokg Ay +k5A?,

2
3+2Ag 3+A2 P (=W LS
12 L) L3

2
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The solution of the obtained quadratic equatiorgiv

Ly + LA, )+ L,/s?B2 - nZA2
ks = = ZAQ) Bi A : (4.40)

where
B® = L5 +2A LsL, + A%LS. (4.41)

And k; is determined in case of the substitutigim (4.39):

n(L3Ag + L2A2)¢ Lsy/s2B2 —n?A?

(4.42)

The substitutiork, andks in (4.37) gives the resultant expression for ameint of
area in the new variable:

dk,ydky = F——>— dsdn. (4.43)

[s2g2 - n2 A2

The double signs testify to a duality of the valoég, andk; in case of same val-
ues ofn ands, that was already noted. It is visible by the esgions (4.40) and

(4.42) thatk, andks will be valid if s°B® ~n”A? 20, then|n < sBA™. After the

substitution of the area element (4.43) in (4.3&) the multiplication into 2 the
electrical intensity will be expressed

qu 1)'[-[ I sexp(ln US (4.44)

- X SE »yS2B2—n A

Let's execute the transition to polar coordinatés the planens

X

n=r$ina, s=r [tosa , (4.45)
for which an area element and a change range aihé following:
dnds=rdrda, 0 < <o, -0y <a<d,,
where
B
Qg = arctgx . (446

Then (4.44) becomes in polar coordinates
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_aux-oyt) J' jrexp isina —ucosa)r dodr
X ’
X =0,d] o 2 \/Bzcosza A’sin’a
after integrating it aroundit is received
[2f}
E = au (x—vyt) cosa da 4.47
- 775|X—v t| 26042 24in?2 (isina'—ucosa')2 . (447
x _ao\/B cos'a-A'sin“a
Let's select the real part from (4.47) and tramsfor
E - 20, (x— vt B/J-A‘ (u? -tg2a)dtga
X - .
Ex=od (u2 —tgza)zwle - A’tg’a
Let's make the substitutioa &ndb are new parameters):
2
tga:Esiny, a=u?, b:B—2>O, (4.48)
A A
after substitution of which it is received
ml2
= 2q1(x—vxt) a-bsin?y d (4.49)

TE{X = 0, A 0 (a+bsm y)

The included integral in (4.49) can be expressethbknown integrals [12]:

2 a—bsin2 2 d ml2 d
I, = —yzdy=2aj Fom [ L. @s0
0 (a+bsin2y) 0 (a+bsin2y) 0 a+bsin“y

Let's write the significance of the second integral

a+b
2 arctg ,|——tg y
dy a

j - %«
0 (a+bsin2y) va®+ab

0 2Ja? +ab '

Let's find the first integral:
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w2 ml2
I A— [(2a+b)j _dr

0 (a+bsin2y)2 2a(a+b) . a+bsin’y
. bsin ycosy 7 _ 2a+b /g
a+bsin?y |0 | 2a(a+b) /a2 yap

Substituting the integrals significances in (4.8@)discover

_nm_Aa
2 (@)t
After the substitution of the integral (4.51) in49) electrical intensity will be
e -abud)
© o dx-od Alarb)?

(451

(4.52)

It will define the parameteigandb by (4.48):

o g st)iest-aif

b=
A? @-pBZ2) @-B?)

1_ﬁx IBy
A-B%-BZ) - B;-B)) - ﬂyﬁz

a+b=

{1 B2 - 82) (x-0,0)? + - 2 - 52 [y -0yt +

+{- B2 - B2) (2= 0,07 + 28,8, (x=0,0) (y-0,t)+

+2B,B,(x~0t) (2=0,t) + 28, B,y ~vyt) (20,1 .
And this tested backward, is equalled
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a+b:%{ (7 -ot)? —[BX(F—ﬁt)]z}.

After the substitutiomy, a andb in (4.52) it is received

X—o,t
L S
= X X

1/2

L- B¢ |- p?
glx =, ((1_ B;E p )2)

X

1_,35_133 32 v = 2 3/2.
i eay | (s et

After the simplification this expression becomes

gy (x—0v,t) (1—,6’2)
s{ r—vt [,Bx r—vt ]2}3/2

EX = (453)

The solutions of the equations (4.6) for compometensityE, andE, will be
similar. Therefore action force of the evenly aimbarly moved charge; with
velocity per unit motionless chargewill be vector written so:

E= a(r -i1)-47) (4.54)

s{ r—vt [,Bx r—vt ] }3/2 |

4.3. INTERACTION FORCE OF TWO BODIES

If R=F-ot=F-F,
chargeq, then the chargg;, moved relatively it, acts on the charmgein corres-

pondence with (4.54) by the force

— is a vector of the distance from the chaggéo the
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Q2Q1(1_ﬁ2)§
g{ . —[ﬁxﬁ]z} 32

As it is visible, the force of interaction betweelmarged bodies depends only on
their relative parameters: distance between thkei; telative velocity and angu-
lar position between distance and velocity. Thermttion of two bodies does not
depend on coordinate systems, frame of referemtler and field. This outcome
testifies that there are no mediums such as ethield in which the movement
happens. If they were interaction would depend elnaity relatively of these hy-
pothetical essences. The expression (4.55) alsfigeghat it is simpler possible
to consider interactions of two bodies by theiatieke distance and velocity than
in different frames of references as it is acceptendR.

The expression (4.54) is known as electric fielgnsity created by a charge
moved with constant velocity in modern electrodyi@nj40] and TR [26]. It is
rewritten as

F= (4.55)

= _ CI1(1‘,32 )R
E= 32
R3(1— B sin’ ¢)
whereg - is angle betweetR and i .

This expression is deduced by the transformatidredextrical strength of a
point charge from a motionless frame in a moved. é&weording to O.D. Jefi-
menko [98] first it was received by Oliver Havisida the basis of the Maxwell's
equations using invented by him operational cak(@4] in 1888. O.D. Jefimen-
ko also deduced the equation (4.54) on the badiseofag theory, which is stipu-
lated by final velocity of electromagnetic actiompagation. T.G. Barnes with his
colleagues deduced (4.54) on the basis of indutijoa moved charge of electric-
al field, which creates induction in its turn, iieapplies a new correction of field
[84]. Thus it is obtained infinite series of intégsE after summation of which
they derived the expression (4.54). Being baseitheexperimental laws (3.3) and
(3.5) C.W. Lucas (Jr.) and J.W. Lucas [102] dedutedequation (4.54) as a re-
sult of repeated integration of transitions of &ckic field in magnetic, and mag-
netic one in electric, which are described by tHagss.

The authors are under impression of the ideologthén above mentioned

works that the charged body creates electricatl figith strengthE , in case of
movement of which it is additionally produced matiméield with intensity H .
According to this ideology, except electrical forde:% =q2I§, magnetic force
must act on a body by Lorentz's law

o =Ll x]. (4.56)

None of them interprets the expression (4.54) dmradorce quantity of the
moved charged body; per unit of a motionless charged body. Moreoveyouty
cites directly the expression for interaction fooddwo moved charges. It is con-
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nected with the fact that the expressions for femenflict with the main laws of
mechanics within the field concepts. For exampld).Qefimenko shows that the
third law of mechanics [97] is infringed or there ather paradoxes [98].

The expression (4.55) deduced by us in 1968 immglidol-
lows from the experimental laws (3.3) and (3.5). &ll&® have intro-
duced the first (3.24) and second (3.22) Maxwéhgs from these
laws. We have sequentially shown that the sameegins used
both in case of the experimental researches, wtodduced to deri-
vation of the laws (3.3) and (3.5), and in obtaieagression (4.55)
it is the force of action on the body.

We obtain the force for constant velocity of movement of the charged
bodyq; in accordance to (4.55). If the velocity depends on time then instead of

the d'Alembert's equations (4.6) solved by us tiherowill be, one of which will
be written in a projection on the axeby (3.36) so

g, =%, 10p, 1, PO (4.57)
£\ 0x ¢ ot c, ot

i.e. component of the derivativéy, /0t emerges. The solution of the equation

(4.57) must give equatioi on not only distance and velocity, but also deivea
of velocity. Classics of electrodynamics have appty applied by these reason-

ings with reference to the equations for scgland vectorA potentials and im-
agined that the fields created by moved charged oeend on their accelera-
tions. Electromagnetic forces of action on a plrtdependent on its acceleration
emerged from here.

We consider that the availability of the derivatide, /ot in (4.57) is stipu-

lated by the cost of differential bondings, whidfisa in case of research of a
moved charged body action on magnet and of a mmagghet on a charged body.
The time derivative of velocity in (4.57) is a paltderivative in the motionless
point of space, relatively which the body is movéad acceleration of a body
arises in case of its transition in space. Theestmnclusion about dependence of
force on acceleration from the expression (4.58sdwot follow. We would have
the full right to tell that the forces depend omeleration if it was revealed for
movement of a charged body with velocitythat for accelerationv the force of
action on magnet differs from the force, when aamadion is absent, or if the de-
pendence of action on a charged body from accalaratas revealed for magnet
movement. If such dependence on acceleration wablisted then the experi-
mental laws (3.3) and (3.5) would include the adidenithw. However we do not
know such results of experiments, therefore we vathsider by the fore-quoted
general proofs that the electromagnetic forces db depend on acceleration.
Therefore the expression (4.55) determines thesfofcaction for any movement
velocity of a charged body.
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4.4. LAW OF RELATIVE MOVEMENT OF
TWO OBJECTS

Let usconsider the interaction of two electrified paitijects with chargeg,
andg,, with massesn, andm, (see Fig. 4.2). Iff; andr, - their position vectors,

. o [
the velocities of charges will be, = d_tl and
F;I l_jz = ﬂ .
z q " dt
) U The position vector from a chargg up
g R, /i to a chargeg, will be R, =F, -F;, and it a
P 4 velocity relatively a chargg,
> - L _df dn
0 Y Fig.4.2 Forces of interaction of two point charged
bodies

X

In correspondence with (4.55) the force of
action of the first charge on the second one

E - %A I?212(1‘,32) '
3/2
£ { Rlzz_[[;xﬁlzlz}

Knowing a force, it is possible to rewrite the etipra of movement of the second
charge:

(4.58)

m, d®r, -~ %A Iilz(]-_ﬁz)
dt2 £ L 2 3/2°
{ Rlzz‘[ﬁlez] }
As the second charge goes relatively the first witielocity (v ) and position

vector from it to the first charg®, =, —F,, in according with (4.55) the force
of its action on the first charge will be the fallimg

(4.59)

E. = 014> |i21(1_ ,32)
1 1132
{Rzzl‘[ﬁszl] }

Then the equation of movement of the first chargebe written
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m, dzrl - %A I§21(1_[3’2)
2
dt & {Rzzl_[BXF_éz:L]z}S/Z

And as R, = -R,, =F, —F, = R, the subtraction of the equation (4.60), multip-
lied onm,, from the equation (4.59), multiplied om, gives

(4.60)

dzﬁz(ml+m2)%qz Fi(l‘,gz)

&g el

After transformation the law of relative movemeftwo charged point objects is
received

mm

dZZF”e o Ri-5?) _ (4.61)
dt {Rz_[gxﬁ]z}
where
= A llp (M + my) _ (4.62)
amym,

Equation (4.61) includes only relative quantitittee distanceR and velocity &

of interactioning objects, i.e. their movement does depend either on frame of
references or the observers, fields etc. In casgndll velocities of movement
B - 0 the equation (4.61) passes in the law of motiochafrges interacting to

Coulomb's law:

—— M- )

The equation (4.63) can be treated treat as equafionovement in case of infi-
nite velocity of distribution of interaction, as oasec; — « of dimensionless

velocity S - 0. That means, the equation (4.61) describes theement of ob-

jects, which interaction is distributed with a finelocity. If the gravitational ac-
tion is distributed with a velocitg, it is necessary to expect, that the movement
of two interaction massas;, andm, will be determined by the equation (4.61). In
this case by Newton's law of gravitation a constdrteraction

4 ==G(m, +my), (4.64)

whereG - gravitational constant.
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4.5. INTEGRATION OF THE LAW OF MOTION

Let us consider relative movement of particlesiplane of vectorg and

R (see fig.4.3). Let's express acceleration

__d°R . o o
W=dt—2 in the left part (4.61) by acceleration in projeas: on a direction of a
position vector and on a direction, perpendicutait(him). Component of accele-

Y T d!aRZQ

. ration on a perpendicular directiof, = — is
P T = R dt
W F
called transversal.
W, W, Fig. 4.3 Plane movement of two interacting bodies.
N Here T - unit vector, andw - angular velocity. The
R S\ radial component of acceleration will be:
» - R( d?R
Oy W, =—|—-Raw? |.
49 R 7 R dt?

After the substitution of these accelerations 13 we have

: d(ﬁz)é(‘ﬁ_w): 4 ﬁ(}‘i) @)
=

Equating expressions in the right and left partthisf equality in case of appropri-
ate vectors? also R we receive two equations, from which the first ovi# be
transformed so:
2 2
ofer?)_ oo
R dt dt
That is during movement a kinematic angular momantu

=0, «wR?=const.

WR2=h (4.66)

remains constant. The movement happens in thaeplarwhich the vectorsR
and o lie. Such property of movement also is inhererbtaractions according to
the Coulomb and Newton's laws.

The coefficients in case of vectd® in (4.65) give the second equation of
movement:
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ﬂ—Raﬂ =y R(l_ﬁz) . (4.67)

dt2 1{ RZ_[Bxﬁ]Z}SIZ

As the components of a velocity of a particle Wit radial -u, = R and transver-
salv, =aR,

2 v® (o, o202
1_ﬁ =1_—2=1_—2R +w°R y
G G

2p2
R? - [px R = R? - L w?R* =R2[1—‘"5 J
cf cf

and after the substitution in (4.67) we receive

1 /(s o0
2 1—C—2(R +w*R?)
— R =y —= —. (4.68)
dt 2( a)ZRZ]
R 1-
ct

This is nonlinear differential second-kind equatid®t's consider its solution.
With this purpose we will proceed to new variable

y=1UR and ¢ = [wdt, (4.69)

where¢- angular coordinate (see Fig. 4.3). Let's tramsfderivatives taking into
account (4.66):
dR:_ 1 dyd¢=_ a dy __ dy

dt y2dg dt  y2dg  dg

2 2 2
d_ZR = —hd_za): —hzyzu .
dt dg

After the substitution of a new variable both datives in (4.68) and its
transformation, we will rewrite:
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2
: )2/_,U21 % 32 =—y—% . : (4.70)
dp?> [ 2, h e,
1-—vy 1-—y
cf G

As equation (4.70) concerns to a class of the neali equations, which indepen-
dent argumeng obviously does not enter, it is possible to makepacement

dy

p—— (4.71)
dg
Then d* 32/ dpdy _ pdIO also equation (4.70) accepts a kind
dg° dydg ~dy
d 2 1
pP AP oy A © (4.72)
dy ¢ (- p2 h® | _h? ,
1-—y? -y
2 2
i Cy

Thus, we have reduced (4.68) to the nonlinear rdifféal equation of the
first order. Let's proceed to new variables:

2
7= p2, f(y):—z%, 4.73)
%)
cf
o) =2 y+it——|, (4.74)
h? [ he 2
ct

which reduce (4.72) to the linear differential efipra of the first order:

%+ f(y)=o(y). (4.75)
y
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Taking into account boundary conditions in a pgirty,, z = z, and designating

y
F= I f(y)dy, the solution of the equation (4.75) will be weaiitas

Yo
y
z=¢eF [20 +jg( y)edeJ. (4.76)

Yo

Now we find functionF, by substituting in integrand expression the sigance
for f (y) by (4.73):

= _ZJ‘ ,Ul/cl dy _ 214 Yo y

2
C h? h? ,
1-—y 1-—vy
( cny \/ c? "’ \/ cf

Further let us take an integral in (4.76):

y y
2
J-g( prdy:—exp¢I2 Y+L X
Y 2 h2 2y, 2 h2 2
’ C1 1‘C7yo ’ h 1‘07)/0
1 1
24y 2y, ¢ 2 2
xexp - L dy = exp——==2——"1-— Y
2 1_L2 2 2 1_L2 , N
C.I. 2y Cl 2y0
G G
y
21,y o (o
— 1 4| =
xex e Yo~z t| Y [
o [1-—y?
G

Yo
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X exp 2/211 Yo _ y

C h? h?
\/1‘2 Yo \/1‘2)’
G Ci

After the substitution of these expressions ingfsblutions accept a kind

2 2
z=—y2+%+ Y2 +25 --L lexp ’Zl y Y . (477)
h h?) o J h? J h?
1-—=y ==Y
2 2
Gt Gt

By (4.73) and (4.71) we will transform variatzte

2 2
—g2=(dy] - 1(dR
£= P _(dqﬁj R4(d¢j ’

w5 (%)
O " R4ldt ) Ldt

Here it used the second boundary conditip(R,) = v, . The first boundary con-
dition was used for a transversal velocit(R,) = aR, = h/R, . Let's mark that

the entry conditions are required in case of bigdiolutions to time in case of
integrationR = jvrdt u@g= det .

After the substitution of significancegs z andyq, 7 in (4.77) the law of mo-
tion (4.61) is received:

2
_Ybro _
=— Yo= -

h?2 Ro

T 54,2
Ra)R:Ro

1 R _ |of 1+[1+“‘2° Cf}exﬁ IR IR | 48)

RZd$ (h?2 RE \RE h2 h?) @ o \/1 02 Jl h?
e | o
drR _dR/dt _o, _ov, o

dp dpjdt w h (4.79)

As

74

then, excludingj—; from (4.78) and (4.79), we receive a radial velpaf

movement of interacting particles

o = [1- B2 -l1- g2 ) expe - . (4.80)

[
Bro =%, ,Btzo=ﬁ-—2=c—2, Bs = Bio * Bro- (4.81)

In case of known, according to (4.80), radial valothe equation of a trajectory
according to (4.79) will be written so:

6= hj = q2)

The equations (4.80) and (4.82) determine movenwrdbjects, which inte-
raction is distributed with a final velocity;. The interesting corollaries follow
from these equations.

4.6. TRANSITION TO CLASSICAL
AND RELATIVISTIC MECHANICS

Let us show that the equations (4.80) and (4.828% ia the equations of a
classical mechanics if to consider distributionirgéractions instantaneous. Tak-
ing into account (4.81) we will find a limit of qdeate of a radial velocity (4.78)
in case ofc; — o

h? [ DA G J U 1 1
- -[1--2- exp—L -
G 0 \/Rz_hz \/Rg_hz
lim o7 = I|m 5 o o
C%ﬂoo 51 — 00 ]/Cl
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The limit represents indeterminacy of a ty%e After application L'Hospital's rule
and simplification it we have

2 2 2 2
PO e S LU Y7y U S ) P /L UL TR [ (N,
o oo R® R; R Ry h h R

From here we discover a radial velocity

2 2
oy =Jvfo+(ﬂ+1] —(ﬂ+ﬂj : (4.83)
h R h R

after substitution which in (4.82) is received #wation of a trajectory in a clas-
sical mechanics in case of movement in a centl fi

_I hdR

- . (4.84)
R2yJo2, + (y /h+ W/ Ry )2 = (g [+ /R)?

Let's show that the equations (4.80) and (4.82)ase of velocities of movement
of objects which are not close to speed of light @educed to the equation of
movement in a centrally symmetric field in theoglativity [26]:

(4.85)

I MdR |
R2W&/c? - [m?c + M 2/R? (- Ry /R]

With this purpose we will simplify expression foradial velocity (4.80), decom-
posing multiplicands in a number and neglectingeadd of the small order:

1
2 ) 2

1—h_i :1+_h i+'
¢ R? 2¢? R?

1
2 5 2 2
24 [1_h_iJ AP E NPT o L
G G G

The exponential multiplicand (4.80) wifR will be similarly written. Taking into
account only terms;f in a denominator the quadrate of a radial velogily be
expressed

_ h? U U
0?2 = cf{ {1— chZ]_(l_ ﬁé)(ﬂ 2?1RJ (1— 2§] ] . (4.86)
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Let's enter quantity

R =M (4.87)

which is call a gravitational radius and bear framght side (4.86) coefficients:

h? -1 h? * R R
Al ]

1

But as in case of velocities not closectsimplifications will be fair
2)1 2
@_ﬁo) :1+B0 +...,
-1
2 2
1- h =1+ h +...,
c’R? c?R?

then after the substitution them and regarding sesfithe ordercl2 we receive

h? R R
V2o 2 -(of +¥J[1-?9J[1+€f] | (4.59)

After the substitution (4.88) in (4.82) we receigproximate up to degree§
the equation of a trajectory

¢ = :
IRZ 2,2 _[ .2 h? Ry Ry
C1 Vg — O.L +? _F 1+E

Let's designate a mass of the moved objeehpfpr example mass of a charge
in Fig.4.3. ThenM = mh - is its angular momentum. According to a relayivi

theory, quadrate of energy of object moved witteleity v,, can be rewritten
2

2 2.2
Vé_gzé Jlmi 2 =1T;(l)2 =m201(1+,6’§)=m2(cf+1)§).
]

(4.89)

If a numerator and denominator in a right side §#\8ill be multiplied onm and
we use expressions faM and W,, we receive the equation of a trajectory of
movement of a point body with a masainder action of other point body
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J' MdR _
R? WG /¢ - (m*e +M?/R? (L~ Ry /R){L+ Ry /Ry )

(4.90)

As the gravitational radiuB;<<R,, then, neglectingR,/R,, from (4.90) the relati-
vistic equation (4.85) is received.

The equation (4.89) is fair for any velocity oftdisution of interactiorc, in
a medium, and not just for a limiting velocity astlibution of lightc in vacuum,
as it has a place in relativity theory. It is fior electromagnetic and gravitational
interactions. By choicgs, regarding (4.62) or (4.64), in a parame®grin (4.87)
the kind of interaction is determined. The relatii expression (4.85) is only
possible for using it, when the mass of objads less significant than the mass of
an influencing body. The equation (4.89) is faiccase of any masses of interact-
ing bodies.

In case of derivation (4.89) in expansion the teainthe ordercl2 were tak-

en into account. Therefore given equation, as atadivistic (4.85), is inexact and
can give incorrect results. Further we will recemere point expression for an
integral of a trajectory and decide it.

From a classical mechanics it is known, that atitngcobjects can reach in
case of radial rapprochement of any large velogitlyich limits only by - a
constant of their interaction. But if the interactiof objects propagates with a
final velocity c;, the objects reaching such velocity will not béeatn act each
other. You should expect, that such objects carspeed up one another up to a
velocity, greater velocity of distribution of thedction. With this purpose let us
consider interaction radial of moved particlés=(0), initial the movement in in-
finity (v,o =0). The radial closing speed, regarding (4.80) asecof these condi-

tions will be written

v, =G 1—exr{%%} . (4.91)

As in case of attractiop;, < 0, only in case of rapprochement up to R = (f &s
visible from (4.91), the velocity will reach a velty of distribution of interaction.
If in any pointR, the velocity of object is equaled velocities adtdbution of

interaction G, = 1), it follows from (4.80)v, =cl\/1— BE =\/cf -oZ , i.e. full

velocity v =v? +vZ = ¢Z. Therefore, such object will have a velodityand in all

remaining points of a trajectory, i.e. will movetkvia constant velocity equal to a
velocity of distribution of interaction.

In summary we will consider isoforce lines (4.583.we can see, the force is
directed on a radius, and module of a force obacthoved with a velocity of a
charge it can be written as
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_ 2
F= qlgz ; ;213 7 (4.92)
R°|1l- B“sin

where B =v/c, - dimensionless velocity of relative movement baiges;¢ -

angle between a velocity and position vectoR from a chargey, up to a charge

O
From (4.92) we receive the equation of a line afstant significance

_ 1-p°

where

A= Sl - const. (4.94)
£

Fig. 4.4 Isoforce linesof action
moved with a velocityo of a
charged bodyg; on a motionless
charged bodyg, were from it on
different angular distancesin case
of different quantities of a velocity 780°

18 = l)/Cl.

The equation (4.93) in cas¢
of A =1 is represented in a Fig
4.4 in polar coordinates. The
lines of an equal force (4.93
represent cuts by a central plar
of surfaces of an equal force,
which are generated by rotation of isoforce lirmsnd a vector of a velocity. In
case of zero velocity of a chargethe isosurface is an orb with a radRs 1.
With magnification of a velocity of an isoforce dim are contractioned along a line
of movement and are stretched in a plane, perpeladimovement. In case ¢f=
1 isosurface of a force turns to perpendicular ciéls a unlimited plane. Let's
mark, that the isoforce lines (4.54) are simultarsgpisolines of intensit{ (4.54)
of the moved charged body.
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CHAPTER 5

THE TRAJECTORIES OF TWO BODIES MOVEMENT
5.1 CLASSICAL TRAJECTORIES

At the beginning we will consider trajectories pfdracting particles by Cou-
lomb or Newton's laws that are described by an tmuaf trajectory (4.84). In
some point trajectory called a pericentre, theraueng objects approach at a
minimum distanceR, (see Fig. 4.3): their radial velocity is equal zero, and
transversaly, =v, =h/R, receives the greatest value. Let's transform emnsmt

for radial velocity (4.83) and trajectory (4.82)aaimensionless kind:

2
v, :\/(a1+1)2—[a1+%} : (5.1)
_. dR
¢_J§217 , (5.2)

where R=R/R, - relative radius; o, =v, /v, - relative radial velocity;
By = vp/cl yay = ,ul/(vaf)) - parameter of trajectory.
The expression (5.2) in case of radial velocityl Feplacementy =1/R is

easily integrated, and in case of boundary comtlifo=1, in case ofg = 0, we
obtain an equation of fundamental classical trajées
1

R= . (5.3)
(al +1) cos¢ —a;
By of transformationX = Rcos¢ and y=Rsing, where
Xx=xR,, YV=Y/R, (5.4)

are adduced coordinates, , the equation of traje¢®3) in Cartesian coordinate
system receives a kind:

a?y? - (20, +1) X% + 2 (ay +1) X =1. (5.5)

The equations (5.3) or (5.5) depend only on onamatera, , i.e. the kind
of trajectory is determined by its size. Let's ddes trajectories of attraction in

case ofay < 0. In case ofr, < -1 of (5.3) it follows, thatR = R/Rp <1, but it con-
tradicts adopted, that a radius of a periceRffeis the least distance between in-
teracting objects. Values therefore are possihle 1. In case ofr, = -1, in ac-
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cordance with (5.3)R =1, i.e. the movement happens in case of constataindis
between particles, namely in a circle.
In case ofa; = -0.5, in according to (5.5),

X =1- 025y2, (5.6)

i.e. trajectory is the parabola. In range of a geatl <a; < -0.5 trajectories repre-
sent ellipses. In case ¢gf= rrthe distance between particles, according to (5.3)
will be greatest:

R, =-1/(2a; +1). ®.7

SizeR, - radius of an apocentre. As= h/(vap)=1, in apocentres the particle
has the least transversal velocity, equal

vy =1/R, = (2a; +1), (5.8)

and it the radial velocity is equal to zero. Leite, that for a parabola in case of
a, = -0.5, according to (5.7), radius of an apocerRge— « , and velocity to in-
finity pursuant to (5.8p,, = 0. In case of change; from -1 up to -0.5 trajectories
become more and more prolate ellipses and in & &nai transformed into para-
bolic trajectory. In range -0.5 & < 0 trajectories are hyperbolas. The half-angle
between asymptotes of hyperbolas is determined (fo®) in case oR — o :

¢, = m—arccoda, /(ay +1)]. (5.9)

The velocity of movement of a particle on infinthlgcomes exclusively radial and
equal, according to (5.1),

D =420, +1. (5.10)

With approacha; to zero the half-angle between asymptatggomes nearer to
712. In case ofr; = 0 hyperbolas are degenerated in direct purgoght 3), equal,
R =1/cosg . (5.11)

As it is seen from (5.10), the particle goes imitnfinity with v, =1 similar to
the same one in pericentres. Using (5.1) it is ¢éashow, that the full velocity of

a particle in all points of trajectory will be = \h)f +1)t2 =1, i.e. the particle goes

with constant velocity. Parameter of trajectary= 0 in two cases: for want of
interactionzs = 0 and in case of infinite velocity, — . In case of it trajectory
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will be a direct line (5.11). Further we will setbat in case of final velocity of
interactionc; of a particle will move on this trajectory, if theelocity v = c;.

The trajectories (5.3) or (5.5) describe sectioha cone by a plane and are
known for a long time. However they are resulted] [@epending on two parame-
ters:

P

ﬁ -,
1+ ¢, cosg

(5.12)

where P = ERP - focal parameter (in a Fig. 4.3 - coordinate rafectoryy, in

case of x = 0)g - eccentricity.
From comparison (5.3) and (5.12) it is visible ttha

P=-Ya,, 13)
& =-(1+Va,). (5.14)

Let's express also through parameter of trajectriarge and small semi-axises

of an ellipse:
b= -—t (5.15)
20, +1 20, +1

5.2. TIME OF MOVEMENT ON TRAJECTORY

Now we will consider time of movement in case denactions Coulomb or
Newton's laws. In case of known radial velocity thee of movement is deter-
mined as

t= de/Dr . )1

Let's consider an integral in an adduced varialdenot in all cases of movements
there are data in pericentres, we will refer vdeahio values in any poimy, in
which the particle has radial, and transversad,, = h/R, making velocities and
where begins a reference of time, tgg= 0. Then with allowance for of radial ve-
locity (4.83) in a dimensionless kind the time afwvament will be

R
f :J- dR ,
2 1 2
! \/5,002 + (af +1) —(alo +_j
R
where

5roo =0,0/V40 0'10 = /ul/(RODtZO)' R= R/Ry, t =toy/Ry.

(5.17)
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Pursuant to definition, connection between pararseté trajectory, is the
following,

a, = O’]C_) Rp/RO . (5)18

Let's transform expression (5.17), and an integmlice to known [12]:

R
_ R RdR JAR? -2a°R -1 0 R R
t=] RIR . : sof R (5.19)

AR? -20°R-1 A L A1 /AR? -2a°R-1

A= (50 +2a0 +1. (5)20

Let's consider cas&> 0. It corresponds to small values, ||, i.e. hyperbolic trajec-
tories. The solution of an integral in (5.19) degeon a discriminant of a radi-
cand

D =-4a+da?) = —4[5?02 +(a? +1)2} <0.
In case of this valuB the integral in (5.19) will be recorded so:

1 - — _
| :ﬁln(Z\/ARZ —2a1°R—1+2AR—2a1°). (5.21)

After a substitution (5.21) in (5.19) and transfation time of movement on hy-
perbolic trajectory is obtained

RiC -, a®  Ri’JA+AR-af

f=
A A2 5l A+ A-af?

, (5.22)

where

— o0 )2 2 —\2
;= \/(vroo) + (af +1) -(010 +J/R) : (5.23)
The caseéA < 0 corresponds to large values;||, i.e. ellipses, and the integral in
(5.19) will be

. AR-a?
arcsin 1 . (5.24)
— 2 2
A FSS +lat )

After a substitution (5.24) in (5.19) and transfation time of movement on ellip-

tical orbit is discovered
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R50 -0 0
t=—r 104 arcsin —arcsin

_‘0’1
3/2
A ( \/ a'l +1 \I a'l +1

(5.25)

Let's consider cas& = 0. From here, according to (5.28f = -05- 0.5(1),0)2.

In case of normalisation t8,, wherev = 0, af =a, =-05, i.e. it is case of
parabolic trajectory. Then the first integral in2®) will be

R
— 1 _
{ JRH/(ZGE%ZG{’W dR

After an integration and reduction time of movemamiparabolic orbit is obtained

B o
_%  RdR
_J;J 2a?R-1 J 20

[2afR-1f"" - (20 -1f"*  J-2afR-1-y-200 -1

2 3/2
olo?) Val-a)
We have considered time of movement on trajectoigase of availability of

transversal velocity. In case purely of radial moeat, in case di = 0, the radial
velocity, according to (4.83), will be

f=

(5.26)

o, =v% 204 [YR-VR,). (5.27)

Then pursuant to (5.16) time will be recorded

-]

R
%%oﬂvaﬂ%)ZM%

1 p dx
j : , (5.28)

a+bx)?y/x

here

1 02 1
=05 -2 [YR-YRy), A=+, p=-_—_
X=vrg ,Ul(]/ ]/Ro) a Ry 24 m

(5.29)

The integral in (5.28) is uncovered by tabular gnéds [24]:

I dx = Jx arct bx
(a+bx)?vx ala+ bx) a\/_
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after which substitution in (5.28) and transforroatiwith use (5.29) time of
movement in case of radial interaction of two otges obtained

D-Mm_—m —
rm _ er Uro

arctg

1
(_m)2 - 53 —arctg— ,
1=bro (1_(5r ) V V rO
im= _zlul
—1)’ 0o =0 (5.31)
r _2,U1 rO ro _2,U1

So, the time of movement on trajectory in casentdraction of two bodies is
subdivided into four cases of movement, which thokevhich take place in case
of availability of transversal component velocify): hyperbolic (5.22) in case of
A> 0; 2) elliptical (5.25) in case @f < 0; 3) parabolic (5.26) in case Af= 0. The
trajectories in case of it are determined (5.3) dase of -05<a, <0,

where

-1<a, <-05, a; =-05 accordingly. In the fourth case of radial movement

time and law of motion are set by the equation@p.Jhe radial velocityp,",
adduced according to (5.31) is included here, whieparding (5.27), has a kind

o = ‘/%—1+(1),"6)2 . (5.32)

The equations for time (5.22), (5.25) and (5.26%ase of availability of transver-
sal velocity become simpler in case of referencpaameters in pericentres. For

this it is necessary to replao:ef on @, in indicated expressions and to equate

0,0 =0. For example, the time of movement on parabodittory, according to
(5.26), will be

f= g(R -1 +2/R-1 (5.33)
and pursuant to (5.25) on elliptical orbit
f=_Ror _ 1o (5.34)
20'1 +1 (_20!1 _1)3/2

From the last expression in case Rf= R,, where R, is determined (5.7), we
will discover time of movement from a pericentreaimapocentre
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. a,T
== - 5.35
a (_ 20’1 _1)3/2 ( )

As cycle time on elliptical orbiT = 2t,,
20477

T=- 207
(_ 20'1 _1)3/2

(5.36)

Thence follows that for circular orbit{ = -1) adduced pursuant to (5.17) period
T=2m. (5.37)

After a substitution in (5.36) semimajor axes dipétal orbita pursuant to (5.15)
is obtained

4
-—a .
a

T?= (5.38)

The last expression for circular orbitg; (= -1) expresses the third Kepler's law:
"The squares of times of the rotations of planetsd the Sun pertain as cubes of
their mean distances from it ". The expression8pi8 a comparison with Ke-
pler's Law is more exact and gives a ratio betweanda for elliptical orbits ¢

# -1), allowing to take into account weights of batteracting bodies by means of
parametegy in a;.

5.3. TRAJECTORY AT FINAL VELOCITY
INTERACTION PROPAGATION

After a reference of velocity (4.80) to parameierpericentres (5.2) the ad-
duced radial velocity will be

2
n=t -2 - plexdompr L - L || (5.39)

The expression (5.39) together with (5.2) represémta dimensionless kind of
trajectory of movement in case of interaction obthodies with final velocity of
its propagation. They describe also considered elmtassical trajectories, as in
case of expression (4.80) passes small velgitg (4.83). The equation (5.39) in
difference from (5.1) is two-parameter, as depamusonly on parametem, but
also on relative velocity,.
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The integration of equations of trajectory (5.2da®.39), and also time
(5.16) and (5.39) was executed numerically [60}hm personal computer by the
help of a packet MATHCAD. With the purpose of ireseg velocity and accu-
racy of an integration the range was divided into segments, where the integra-
tion implemented, and the results then were sunaedriBy asymptotic solutions
adduced in item 5.7, and test examples it is prothed the error of an integration
does not exceed 0.001. In case of calculationpdhametersr, (-0.1; -0.2; -0.3; -
0.4; -0.5; -0.6; -0.7; -0.8; -0.9) ang} (0.1; 0.3; 0.7; 0.9) are varied. Other values
of parameters, which were determined by charatites$ trajectories, were also
set. The programs for processing of results wertenron a Fortran.

Consequently the program on the MATHCAD languagkictv actuated all
stages of evaluations, was developed. It has atlcsemsiderably to simplify cal-
culation of trajectories and to increase accurdcsesults. The given program is
adduced in Appendix 1.

Only the most characteristic kinds of trajectong be shown below, but
the time of movement on them will not be considersitl calculated trajectories
(about 90) can be found in the monograph [59] ibukar form of sizes

R,,,9,%,V,Ap, T, where X andy - are Cartesian's coordinates. There the val-
ues R, ¢ andt for limit points of classical trajectories thatatetermined in same

parametera; are given. In Appendix 2 the initial parametersl aalues in final
computational points of trajectories, which areteymtised under the forms of
trajectories, are adduced.

5.4. THE HYPERBOLIC TRAJECTORIES

In a Fig. 5.1 in Cartesian coordinate systetn=(x/R,; ¥ = y/R,) the half-

branches of hyperbolic-like trajectories are shoWme attracting centre is at the
origin, and the particle moves from a pericentke=(1, y = 0) to infinity or visa
versa. The inversion of movement is supposed bggs® of integration for all
trajectories, expect elimination 7.

When g, = 0.1 trajectories practically coincide with thiassical one. With
increase of velocity in the pericentres the haltflarbetween asymptotes, de-
creases and in case of limitigy = 5,c = 0.954 becomes negative. The trajectory 7
differs from remaining not only by the anghg < 0. Let us consider some details
of the integration. The poinR =1 is a singular point of an integral (5.2), since it
transforms (5.39) into zero. Therefore numericak vilstegration implemented
fromR=1001 up to R=1000, and the angle incremeny in the area

1< R <1.001 was determined from the asymptotic solution

¢= L ﬁi_l , (5.40)

1+ay/1-82 R
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which derivation is given in item 5.7. As one cae sthe denominator in the first

multiplier vanishes to zero when
By = Bpc =41-0f (5.41)

y i.e. in this case wher,, = 0.954 and
! 7 R =1 the angleg tends to infinity. This
2 result was verified by numerical integra-
6 tion, namely by sequential setting on the
3 5 integration variable starting & =1.0001,
4 R =1.00001 etc. Thus, the particle of the
5 traj_ectory with Iimiting \/.elocity,B’pc at .th_e
\ pericentres, while moving from infinity,
Ya 6 3\ reaches a circle with radiuR =1 and
2 rests on it infinitely long. It is occurs that
. the particle moving from infinity is cap-
G tured by attracting centre into a circular
orbit.
4 3 2 1 =

Fig. 5.1.Trajectories atr; = - 0.3 and sub-light
speed at the pericentrg8, € B,) with half-angles between asymptotgsand approaching

velocities in infinity 3., (sign! testifies to the beginning of an integratisith R = 1.001).
N° 1 2 3 4 5 6 7

5 0.1 0.3 0.5 0.7 0.9 0.93 0.954
a -0.006 | -0.054 | -0.15 | -0.294 | -0.486 | -0.519 | -0.546

ﬂr:, 0.063 0.208 | 0.329 | 0.480 0.649 0.668 0.667
#a 64.8 64.4 63.8 61.9 50.6 40.3 -5.58!

We consider the given process in more details. Rgs# to infinity, and
consequently, a circular orbit are possibleat 0 in expression (5.2). From ex-

pression (5.39) with allowance for this conditioa get

a,=05 lnl[l_géj/(l‘ﬁﬁ)] |
Al - e

The radius of a circular orbit is simultaneouslsadius of the pericentre, i.e.
R =1. Having found the limit of the right-hand side48) whereR - 1 for cir-
cular orbitayc = &y and S, = 3, we get the following relation:

Oy = —/1- Bhe - (5.43)

(5.42)
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With small velocities (3, — 0) it follows from (5.43) thata; = -1. This really

corresponds to a circular orbit. Since the expoess(5.41) and (5.43) are identi-
cal, this fact convince us again that trajectorgdding attained the limiting veloc-
ity S, at the pericentre, passes to a circular orbihas/s in Fig. 5.1.

Fig. 5.1 also shows the radial velocities of p&ton infinity S,,, and half-

anglesg, between asymptotes. For trajectory 7 the plottihg polar angle begins
at R =1.001. With increase of the particle velocity in theiiity its velocity also
increases at the pericentres. The violation of thie for trajectorie and7 is
explained by the fact that the trajectory parametgedepends on velocity at the
pericentresv,. Therefore it is expedient to consider the intiéoac parameter,
which is independent of velocity,

214 Ry

a= =——, (5.44)
Rpcl2 RP
which is connected witkr; by a equation
a=2a,5;. (5)45

As follows from Fig. 5.1, the interaction parametefior all hyperbolic-like trajec-
tories is less than 1, i.e. according to (5.44)pkdcentre radiuses is larger than
the gravitational one.

The third property of trajectory in Fig. 5.1 is its finitude. In the arg@. <
5, < 1 the radicand in (5.39) is negative, i.e. @jetrtories exist. With the purpose
of numerical research of the other possible trajges the parameters of equations
(4.80) and (4.82) were, as well as in (5.17), ref¢rto parameters,, R, at an
arbitrary of trajectory. In this case, Equation2j5remains without change, and
instead of (5.39) we get

1 1
\/ﬁz_ﬁt% \/1_,8tzo

, (5.46)

2
so_ 1 |, P
‘ =

PBro 2

where

ﬁ:R/Ro’ Bio =010/ Bro =vr0/Crs Brozvr/DIO* a](.)::ul/(RODtZO)'

~(1- 52 - 52 Jexp 20082,
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The equations (5.2), (5.46), and also (5.16) antb|5vere integrated on two
segments:R >1 and R <1. The values3, = 0.96 were set to relative transversal
velocity; 0.97; 0.98; 0.987, which are more thpand the radial velocitg, (see
Fig. 5.2) was varied. In all calculations we foutitht decreasind? up to some
value R - f3,, the radial velocity tends to zero, i.e. this pdimthe pericentre

R=R,. And the
Rp/RO = B , indicates according to
3 the angular momentum conservation

law h =Rp,, =1, that the tangential

4 velocity at the given point tends to
the speed of light, but it does not
reach it B, =v,/c;=1,. These

value

trajectories with almost light speed at

6
5_ \
4

\

the pericentres are restandardized to
R, and shown in Fig. 5.2. Since the

|
5 .
\6x N trajectory parametera; = / (hop)
when v, =c; is  connected
@,
2\ ay = u;/(hoy) by the equation
— 0
5 I a, =ayi o, (5.47)
7/\ 2 Fig. 5.2. Trajectories ata; = - 0.3 and
I i 1 light speed at the pericentrgg, € 1.¢). A
4|I -3 2| -1 |0 1 «|V sign * - conformity of the data.
N° 5 4 2 1 5 3 1 6 1 7 1
Bo 0.96 | 0.96 | 0.96 | 0.96 | 0.97 | 0.97 | 0.97 [ 0.98 | 0.98 | 0.987| 0.987
a4  |-0.576(-0.576|-0.576| -0.576| -0.582| -0.582| -0.582| -0.588| -0.588| -0.592| -0.592
Bo 01| 02 |025|028| 01 | 0.2 |0.243[ 0.1 |0.199| 0.1 |0.161
BdRa | 0712| 0850| 0.049| 10 |0707| 0.897| 1 |oesr| 1 |1oar| 1
Pa 35 73 84 90 35 78 90 23 90 | 41.2| 90

it follows that in this caser; = -0.3 and trajectory of a Fig. 5.2 is possible ¢o-c
sider as prolongation of trajectories of Fig. 5ithwhe particle velocity increasing
to infinity. However in contrast to the trajectarief a Fig. 5.1, with an increase
B, (see trajectories 6, 5, 4, 3, 2 in Fig. 5.2) thgla between asymptotefs
increases and for the particle moving with thetligheed (3,,, =1), the angle is

equal to772 (see trajectorie$), i.e. the particle with speed moves along vertica
line. It the trajectory is described by expresgi®il). The movement of a particle
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infinite velocity happens interacting accordingGoulomb's law takes place on
such trajectory.

Numerical solutions have shown, that the trajeetoniith light speed at the
pericentres are received at tangential a partielecity

/&0 > /gpc-

With further increase in tangential velocity (segdctory7 in Fig. 5.2) the orbit
becomes final and the angle of its apocentre fioenptericentre ig, = 41.2°. In
this case period of return to a pericentre wilirnplemented over angle 82.4°, and
for one revolution will be more than four such pes. A final orbit we shall mean
a trajectory on which the particle does not leavanfinity. For such orbit the an-
gle ¢, means an angular distance up to the apocentrehe@angular halfcycle of
orbit. As the radius of the apocentre in the comrsd exampleﬁa =104 does
not differ from the pericentre radius, the movemaitittake place along the circu-
lar orbit with four small hops per turn. During loghe velocity particle dis-
creases, and at the pericentres it tends to ligk¢d As in this casg, is not a
multiple of 7#n, wheren is an integer, the position of pericentres in spadll
vary, they will rotate with an a angle per turn

(5.48)

Ap, =2¢,(n+1)-2m, (5.49)

wheren = INTEGER (7¢, ) is an integer; INTEGER is the whole part of nemb
Apparently, for the final orbits similar to 7 ing=i5.2, the radicand in (5.46)

in at large R should be negative. Let's discover the limitingrapaeters

ay, and B,, =./B%+Bs from the conditons’ =0 when R - . After
transformation (5.46) we get

\ll_ﬁt% In(l- ,ng)

Bio
With Ry = R, and small velocities wheng,, = S, - 0, it follows that

0 —_ g
a;, =05

. (5.50)

afp =-05, i.e. the equation (5.50) determines the paranadtparabolic trajec-

tories. If the tangential velocity of the partiégtelarger than the limiting velocity

Boc _and larger thay, then the trajectory will be final and have ligitteed at the
pericentres.
In accordance with positions the parameters thererewshown

a,lo =-0498 pB,, =0.93, where final trajectories are brightly expresséi(
5.3). With an increase in the radial velocity fi@jéctoriesl, 2, 3sizes of a hop
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AR =R, -1 and the angle up to the apocentre increase. Wither increasg,
the valueR, grows continuously, the angy reaches a maximum for trajectaty
and then decreases. In this case the trajectb@@si5 have an apocentre separat-
ing from a pericentre more, than one revolutionthé further increase of radial
velocity the trajectory (see lin® is broken. When, approaches to unit the tra-
jectories are flattened and, coming nearer to eadrtat light speed they turn into
straight lines (similarly to trajectorie} 2, 1in a Fig. 5.2). It is necessary to note,
that the hyperbolic-like trajectories in Fig. 51dab.2 can in separate regions co-
incide. However, the particles different movemeintteraction correspond pa-
rameters to the trajectories and the velocitiesgatbem are different.

So, in the region -0.5 &, < 0 we can note the hyperbolic-like trajectories a

particles velocities at the pericentres
6 y \

B, < B, the trajectories of acquis-

ing the particles from infinity into
circular orbit whens, = . and the

trajectories of the particles moving at
the speed of light in the pericentres
when B, > f,.. In the last case,

where By > S,,, we can see the final

=~

trajectories, which period can differ
from 2ressentially.

Fig. 5.3.Final trajectories1=5) with light
speed at the pericentrg, €1,).

ay = - 0.498;5,= 0.93;a = - 0.926

1 2 3 7 5 5
o 0100 | 0120 | 0128 | 0129 | 0.130 | 0.200
Ra/Bier | 1103 | 1.133 | 1.176 | 2.981 | 3.035 | 0.095*

Pa 50.8 | 821 | 1356 | 626.8 | 4329 | -18.4

5.5. THE PARABOLA-LIKE AND ELLIPSE-LIKE TRAJECTORIE S

In a Fig. 5.4 the sub-lightsped trajectories whem,o= -0.5 we show, that in
the classical casef, — 0) gives a parabola. Even with, = 0.1, trajectoryl is

a highly-stretched ellipse. With an increase obe#y the distance to the apocen-
tre decreases, and the angular distafydacreases, and for the limiting trajectory
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6 it exceeds Z For this trajec-
tory, as well as for a limited tra-
jectory7 in Fig. 5.1, the angle is
counted fromR =1.001. In the

areal001>R=1 ¢ - o, i.e.

the acquisition of a particle fromr
the final area of space into thi

circular orbit happens.

7 _
y
2
7\<3
;\K:"
/_\
I_
|/, |
-3_2\ 1 2 3 4 x
-1
5| A

Fig. 5.4 Trajectories at; = - 0.5
and with sub-lightsped at the pericentr8s<4. ).

L
yd C
05

N° 1 2 3 4 5 6 7
B 0.1 0.3 0.5 0.7 0.8 0.866 1o
a -0.01 | -0.09 | -0.25 | -0.49 | -0.64 | -0.75 0.9
Ralfiw | 23641 | 2574 | 2507 | 37.28 | 13.16 | 5456 | 0.195*
Pa ! 1822 | 186.8 | 200.7 | 224.3 | 383.6! | -7.243
180.2
In Fig. 5.4 the trajectory7 with
Y Bio =09 and S, =02 which has
2 the light speed at the pericentres is
(6 also presented here. This hyperbolic

trajectory with a negative angle be-
tween asymptotes is similar to trajec-
tories6 in a Fig. 5.3.

So, in case of the constant pa-
rameter of trajectoryr with an in-
crease in the particle velocity, the

2\ -1 \/5'0’5 o 05 *| parabolic trajectory transforms into
v 7 0.5 / " an ellipse-like, in which the pericen-
tre turns by an angldg per one turn
N according to (5.49).
Fig. 5.5. Trajectories atm;, = - 0.7 and
with sub-lightspeed1(5) at the pericen-
tres 3,< ).
N° 1 2 3 4 5 6
B 01| 03| 05| 07 |0714| 1,
a |-0.014|-0.126|-0.350| -0.686| -0.714| -1.12
Ra /B« 2.482| 2.334| 1.991| 1.220| 1.031| 0.331*
$a | 180.4| 184.5| 197.5| 328.1| 13401| 40.26
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The minimum distance to the apocenig = 5.456 is peculiar for a limited tra-
jectory. With even higher speeds, the trajectonesome hyperbolic, with light
speed at the pericentres.

Ellipse-like trajectories, as follows from Fig. 5¥hen increasing their speed
decrease the eccentricity and increase the percestolution. The limited trajec-
tory 5 has less expressed apocentres, therefore praciicdbes not differ from
the circular orbit. Here we show the trajectérwith light speed at the pericentres
obtained ap,, = 08 and B,, = 04. The interaction parametem]|in this case
exceeds the unit, i.e. at the pericentres the ghartjoes inside the gravitational
radius sphere.

To determine the possible values @fwe take advantage of connection
(5.45) with parameter;. Then for limiting trajectories (5.43) we obtaimetde-
pendence of the interaction parameter a with velocity at the pericentrés .

a. =251 B - (5.51)

It is easy to show, that this expression has areextm at 3. = v2/3 and

as

the highest value of the interaction parameter bdla, = —4/\/5. When §

>|a,| the trajectories already have light speed ap#reentres, and they are either
hyperbolic, or terminal. Thus, taking into accoBi44), it is possible to make

conclusions. At first, for an attracting centre twi radius of a smaller gravita-
tional radiusR, (the so-called " black hole ") the particles camgtrate inside the

gravitational radius circle and do not fall on thitracting centre. Secondly, the
particles at the pericentres reach the light spaed ,owing to decreasing action on
them go to infinity (or to the apocentre - for témal trajectories). The elimination

is made only by a particle, which vector velociydirected strictly on a radius.

According to (4.80), witlh = 0 andR;, -  we obtain

B, =\1- - B3)exp(-R, /R) (5.52)
In this case particle will fall on the attractingntre, but its velocity, as follows
from (5.52), will be less than light speed. In thassical case (4.83) for the parti-
cle, moving radially from infinity, the velocity is

IBr = \ ﬂrzo + Rg/R . (5.53)
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> If the particle restedf, = 0) at the
\ )\ infinity, on reaching the radius

R=R, its velocity will be the equal

8 9 to light speed. As this process is iden-
5 tical to both electromagnetic and
6 gravitational interactions, the
valueRy is best referred to as the light

4

\\ radius.
\ \ So, the obtained results testify

4 that for interactions propagating with

R velocity c¢;, the attracting centre at

7 radius R< Ry, i.e. "the black hole",
3

x \\\\ involves substance more weakly, than
3

the classical attracting centre, which

< action is propagated instantly.
P The interactions of trajectories
e \\\ with constant parameter, were ana-
/ lysed in above mentioned cases. In
/1( case of variations3, parameters of
! interacting objects vary. Let's consider
-3 -1 1 ¥ speed influence at constant character-
| | istics of interacting objects. In Fig. 5.6
the trajectories with constant parame-
ter a are shown.

Fig. 5.6.Trajectories with constant interaction parameter- 0.3.

—

N° 1 2 3 4 5 6 7 8 9
b 0.408 | 0.463 | 0.548 | 0.707 0.866 0.913 0.988 1o 1
_ a -0.9 -0.7 -0.5 -03 -0.2 -0.18 -0.154 | -0.151 | -0.15
Ri/Be | 1.036 | 2.074 157 0.488* | 0.739* | 0.809* [ 0.913* | 0.968* [ 1.0*
¢; 189.9 | 1935 | 189.1 | 62.56 73.78 77.56 59.40! 82.72 90

With increase of velocity at the pericentres eageities of the ellipse-like
trajectories { - 3 are increased, and then they are broken andtadsyperbola-
like trajectories 4 - 7), which angle between the asymptotes grows. Witme
higher velocity in infinity 5., (the trajectory8) speed is reached at the pericen-
tres, the angle, increases and tends 12 ¢, for light trajectory9. It should be
mentioned, that for3, = B, (trajectory7) the angle between asymptotes is less,

as the integration is executed upRo= 1.001.
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The variations of trajectories for different and 3, are shown in Fig. 5.7.
The curvel from (5.43) limits from below, and on the righethrea of existence
of trajectories with sub-lightsped in pericentré&bis curve gives parameters of
trajectories which are transient into circular arihe curve2, presenting relation
(5.50), detaches the hyperbola-like trajectoriemfellipse-like ones. The parame-
ters of parabolic-like tra-

jectories are located on it ¢ \
Curvesl and 2 are inter- \\
sected at the point;, = - ¢, \

\
\
] il
—

7

0.450764 and B, =
0.89264.

Q
1T —t—

)

|
5
N

- -0.4
Fig. 5.7. The panorama of
trajectories of two-body inter-
actions depending on parame 0.6

N —
tersa; andg,. /—\
1 - Formula (5.43);2 - for- { ./—
mula (5.50) atB, = By =Lop- / D\ /‘
aNs
/
2

A

//)/
N

N

Kinds of trajectories:G - -0.8

hyperbolic;P - parabolic-like;

E - ellipse-like;C - boundary
trajectories, transient in a -/
circle; S - with light speed at
the pericentredy - absence of
trajectories.

0. .4 0.6 0.8 B

5.6. THE TRAJECTORIES OF REPULSION
AND FULL PERIOD OF TRAJECTORIES

Fig. 5.8 presents the hyperbolic trajectories wtten interacting bodied are re-
pulsed. The repelling centre is in the origin. Tapelling centre is in origin. The
calculations were performed at three valuesrohnd variation of3,. With an in-
crease ing, the half-angle between asymptoggsincreases and tends 2 for
the light speed trajectory. The interaction par@metis positive for the repulsion
trajectories also can be more unity. The partigioeity increases when it moves
away from the centre. Trajectories halfcycle wevasidered earlier. In Fig. 5.9
the trajectories during full period are presenfEide cyclical trajectoried and4
are open-ended. The trajectory with hdpsas three periods per one turn at 360
and the trajectoryg has three and one-half turns per period.

Used here concept "period"” is applicable to théadise between the interact-

ing particles, as it increases from minimuﬁﬁ =1 up to maximumR, and then
decreases up tﬁp when the angle changes ¢gp = 2¢., wheregs is a function

period R(@) . Unlike classical case, here the particle doesreinirn to an initial
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point of space through the angdg, i.e. the vector function§(¢) andﬁ(¢) are not

periodic. Therefore in general case the motion @lterminal trajectories is not
periodic. However ifg, is multiple to numberz the motion will be periodic. From
Fig. 5.9 one can see, that for trajectorleand4 the angular distance up to the
apocentre is possible to present as:
¢, =m+k, (5.54)
wheren = 0,1,2...k = 1, 2, 3..., i.e. the particle will come in thenge point of
space with full period
@p =2k@, = 27kn+277. (5.55)
For example if trajectorg would have the precise equaligy = 773, instead
of ¢, = 59,8, that, according to (5.54) is expressed by faator9 andk = 3, then
7 according to (5.55) the full pe-
% riod is gp = 271 That is three
0.7 15

|08 OB 0T\ LS periods of a changeR(g)
would lead a particle to the ini-
tial point of space. For trajec-
6 tory 4, if ¢, = (3mr+ 72)57.3 =
b5/ 09 0.5 630, instead of 626,8that cor-

responds to factons = 3;k = 2
and full period, according to
(5.55), ¢» = 14 Here particle
comes to the initial point of
space after two periods of a
3 - changeR(g) .

The examples of trajecto-
ries 1 and4 show that the pe-
riod two interacting particles
motion can vary over a wide
1 range: from 2rup to 147 i.e. in
7 times. In this case the periodic
movements are characterised by
the whole values of numbers
andk.

=1 0.9
5571 .1 0.5 i,
0.1 :

0 T
1 2 3 4 5

]|

Fig. 5.8.Trajectories of a repulsion.

a 0.3 0.3 0.3 0.3 0.7 0.7 0.7 15 15 15
B 0.1 0.5 0.9 1.0 0.1 0.5 0.9 0.1 0.5 0.9
a 0.006 | 0.15 | 0.486 | 0.6 | 0.014 0.35 | 1.134| 0.03 0.75 2.43

B | 0126 | 061 | 0968 | 1.0 | 0.1543 | 0.707 | 0.993 | 0.198 | 0.827 | 0.9999

Pa 76.7 | 76.9 | 79.1 90 65.7 66.6 73.2 53.2 55.6 69.0

As the trajectories and the anghg are determined in parametarg and f,
then discrete valueg; and S correspond to values andk. These results about
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discrete (quantum) parameters of periodic movemeats have the important
value for atom physics and a radioactivity.

We will consider one more exotic trajectory in Fig9 - trajecton. It inter-
sects it at a significant distance from the atingctentre. When define the pa-
rameters of attracting centre according to thesttajy characteristics and using
the classical law of interaction one can make rketaFor example, the size of
the attracting centre can be overestimated orntexdction of attraction is per-
ceived as repulsion: and in both cases the paitickflected from centre.

yA
g ! 7A
7
1,5
G5 % = 4
%
-1 -0 0 05 o5 1]l1s \
0,5
5
p 104
T T T T T ) >
60  -50 -30 0 x
-10—

Fig. 5.9.Trajectories for full period in case of light veity in pericentres.
Numbers of trajectorie, 4, 6correspond to a Fig. 5.3.

The obtained results require more careful undedatgnand analysis. We
can already see now that they can provide new mmésina for understanding
natural phenomena. Probably, these trajectorieserplain availability of steady
orbits of electrons in an atom, the transition ofedectron from one orbit to an
other, the capture by the kernel or atom of a gartiaving determined of kine-
matic parameters, etc.

With reference to gravitation the results say tmany phenomena have an
exact opposite effect of that predicted by GTR. Example, if gravitational ac-
tion propagates at light speed, “the black holdsjutd not exist. If astronomers
discovered this, they would likely conclude grayitppagates with in finite speed
or much greater than the speed of light in vacuum.
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5.7. ASYMPTOTIC SOLUTIONS

1. Solution close R =1. A radicand in (5.39) we designate a@iz). One

can see, thdt(1) = 0. Let's decomposé(ﬁz) in the neighbourhoodR? =1 in to
Teilor's series

f(ﬁz)z f (1) + f'(1)(§2 —1)+ f"(1) §22-1 2 +... (5.56)

and asR? does not different from 1 greatly, we shall takeycthe first two ad-
dends.
According to (5.39), the derivative has a kind

df
d(R?)

11
JR? -8 \1-B}

y al,Bg _ g ,ll—,BS +ay
(ﬁz _ﬁs)alz . p /—1_ /3;2,

After a substitution of a derivative in (5.56), arli(ﬁﬁz) in (5.39) radial velocities

we have
7. =\/(1+a1/,/1—ﬁ§) RZ-1. (5.57)

Allowing for (5.57) the trajectory equation (5.2)Ivbe recorded

X

=§—§+ (1‘ﬂ§)ex 201,

4= 1 dR
\/1+ al/m L RVR? -1

As the result of integration the expression (5i4@)btained. Since the exact solu-
tion wheng, = 0 is shown by the equation (5.3), they were cameg at different

—— 0|

a,. As the result it was established, that wher=1.001 there is no difference
between them to the third decimal place after arnarimclusively.
In the limiting case, wherg, - [, the derivative isf'(l) - 0. There-

fore to specify (5.40) it is necessary to consither second derivative. After dif-
ferentially derivation the first derivative we get
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a2f 282 (1—ﬁ§)alﬁ§(alﬁg+1.5,/§2—ﬁ§)

d(ﬁZ)Z - ﬁﬁ

(5.58)
1 1

g [Re-g

(1— Bg)sex 20,35

At the singular point3,, = B,; when R =1 the second derivative will be

i) = -2 (025+ 0542,

i.e. it is final. Thus, in view of the higher ordef a smallness in relation to the
(ﬁz —1) the third term in (5.56) can be neglected andekgression (5.40) re-
mains valid whenB, = S.

Now we will define the approximation near the pene for time. In a di-
mensionless kind the integral for time (5.16) w# recorded

f=[9R (5.59)

Or

Substituting the radial velocity (5.57) in (5.59daintegrating, we obtain ap-
proximation for time closeRk =1 as follows:

(5.60)

2._Approximation at light speed.Wheng, = 1, the expression (5.40) has a
singularity, therefore to find incremengsin the areal< R<1.001 we will em-

ploy a direct line equation, which at = 0 is determined by the equation (5.11).
Hence

e arccos(]/ ﬁ). (5)61

With R=1.001 and ¢ = 4470072 or ¢° = 2.56, i.e. for a light particle with

variation of R from 1 to 1.001 the polar angle changes from 2.56.
3. Approximation for an apocentre. (5.2) For ellipse-like trajectories the
numerical integration calculation was performedhwsmalls o, i, , Which have
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the orderl[10~ and less. It is necessary to estimate, the inaneheorrespond-
ing to a change of radial velocity from,,;,, up to zero. With this purpose we will

express a relative radiu® from (5.1) through velocity, i, :
1

‘0'1_\/(‘71"‘1)2 -o7 |

R=

Here when solving the quadratic equation we chélseign corresponding to the
apocentre. A radiuR will be substituted into the classical traject@yuation
(5.3), whence we obtained

(al + 1)2 B Erz
A¢ =arccos—————. (5.62)
a +1

To include the effect of relative velocif, we use the asymptotics (5.40) for a
pericentre. Let's include the influence coefficikrmts ratio of the angl@, accord-
ing to (5.40), to the same expression vt 0. In the total we have

1+a
k= | L@ (5.63)
1+ay/ |1~ B2

Multiplying (5.62) by (5.63) the approximations fibre apocentre will be recorded

as
[ 2 -2
1+a, (a’l +1) -0, . (5.64)

Ag = arccos
1+a1/,/1—ﬁ§ o +1

Due to the approximate character of (5.64) fortimg trajectory B, — B

the numerical calculations with subsequent deangasj,,, have been done.

They have shown, that the particle moves to theamoe with the final anglg.
Now we will define the approximation for time in@gentres. From integral

ratio for ¢ (5.2) and timet (5.59) it follows, thatdt = R2d¢ . Therefore, in the

apocentres with small changgst is possible to record the approximation fordim
as

At =R2Ag, (5)6
whereAg is set by the expression (5.64).
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CHAPTER 6

THE FORCES OF INTERACTION OF VARIOUS BODIES
ON MOVING CHARGED PARTICLE

6.1. INTERACTION OF THE CHARGED
RECTANGULAR PLATE ON A PARTICLE

Let's consider the interaction of a charged plaité & chargey, on a moved
charged particlg; (Fig. 6.1). The sides of a plate am@hd . The beginning of
coordinates system e z, yis taken in the cntre of a plate; the plg@x coincides
a plane of a plate; the axBy is
parallel to side B, and axi®zis
parallel to side & The coordi-
nates of a particle ang, Yg, 7,

F
q . . ;
> 2 /r and it moves with velocity
% T s i aT 4k
>

v=lv, + jo, +ko,.

A _
o 0 - - -
Fig. 6.1. The interaction of a

2b

ing particle with a charge;.

/y The element of a platdy; dz
Z has a charge

dg = dy.dz,, (6.1)
whereo =q,/S is the area density of a charge= 4ab is the area of a plate.

According to (4.58) we will record the expression interaction force of an
elementdq and we summarize it on the whole surface of aeplat

a b —
F= Fp(l—ﬁz)jdzsj{ - _l;(iyi P 6.2)
-a -b
where
Fp =i, (6.3)
=ix, +n+k{, (.4
n=Yq=VYss =242, (6.5)
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charged rectangular plate on a mov-

X =Xq. ¥y, Z are the coordinates of a moving partigle As for a plate the coordi-
nate isx = 0, the sizex characterises a particle unequivocally. Introdgcia-
placements

al = Xzyx2 + ZXZBXBZ +52y22 > 0' (6-6)
b =2B8,(X8 +{B,); ¢ =y,>>0, (6.7)
=\1-B2-p2, y, =\1-B2-pB%, y,=\1-B2 -2, (6.8)

let's rewrite the force equation (6.2) in projesi®n an axis of coordinates:

Z-a
Fe = Fp@-B%)x ledz , (6.9)
z+a
z-a
F, =F,@-B%)x szdz, (6.10)
z+a
z-a
F, =F, (- B%)x [3,d7, (6.11)
z+a
where
y-b y-b
Ji = 47 2\3/2 J2 = 797 273/2° (6.12)
y+b (80 T b7 +Ci77%) y+b (8 Tbi7 +Ci17%)

After integrating the first integral in (6.12) wetg

; ZM+N B
L y,d- /3)(1 B?) a, +b,{ +7?
|/7:y+b
- dM+N , (6.13)
8, +b,0 + % Wag +byd +72|
where
a, = Mm b, = 2Bz (6.14)

1_:8x 1- ﬁx
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x2yg +2xnB,By +n%y, 23,(xBy +1f3y)
a, = X yzx y Y 50, %_% (6.15)
z z
N=nyy +xBBy,  M=pyp,. (6.16)

After integrating the indexes "g" at coordinates amitted.
After substituting the integral (6.13) in expressdorF, (6.9) andF, (6.11),
accordingly we have

F, x o
_m%‘g;ﬁ; , (6.17)
W jz ‘ (6.18)
where -
({M +N)dZ

(6.19)

JS
ZL (8, +by +¢? Wag+byl+{
The parameters of integral (6.19) a andbs; depend omy, therefore in equations
(6.17) and (6.18) the values of an integral andgrand expressiodJ; with dif-
ferent valueg; are normalised.

The integrand numerator of integrals which areudet inF,, is possible to
transform as follows:

(MZ +N)Z =M[(a2 +b,{ +¢ 2)+ Mo +N,],

where
o __21-B
N, =-a, = —x 1= g2 , (6.20)
M, :ﬁ_bz =By +xB By (vi - /3'x) 6.21)
M ByB, L= B%)

Then the integrals in (6.19) become simpler andedleced to integrals of a type
J; as follows:

n=y-b|¢7772
, ”f P Loy (R + X8, + 1B, 8, + C12)* 35(M 5. Ny) ,
z( IBX n=y+b (=z+a
X (6.22)
where
R, =R2-[BxR12 =|R* - %)+ (BR)%. (6.23)
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Here in an integral;(M», Ny) the factordM andN in the equation (6.19) are
substituted for parametef4, andN, accordingly.

As we see, the expressions (6.17) and (6.22) faefd, andF, are deter-
mined by integral (6.19). This integral is not immoals and is calculated:

_M(azg—a,-A) - N(b; - Z"
Jy = arctg -
3 A\/ZA—B \/2A_B\/a3+b3(+52
_M(as—a, * A-N(bs-b,) V2A+Bya; +b,E + &2 + (6.24)
2AV2A+B ,/—2A+B fag+b,E+2 -2
where
A=+ (@g ~2,)% - (agh, ~ a;bg)(bs ~b,) | (6.25)
B=2(ag-a,)—b,(b; -b), (6.26)
Z* = Ax((ag—-ay)+{(b;—b,)] . (6.27)

After substituting the integral in equation (6.58Ad (6.22) and making great
transformations we get the expression for intengctorces of a charged plane on
a moving particle as follows:

Xzﬁyﬁz =XnBB, —{ A~ :83) - XZﬂXIBy
xR,

{=z+a

|'7=y—b
, (6.28)

F. = Fparctg

‘r]:y-fb 7=7-a

F. = p [ ( 2 ,78 6) )
z~ ﬁz yy I“ yyle\, Xﬂxﬁy l?yy yrr’z

n=y-b|¢7

BB

z

_Bxb;
1- B¢

In(yzRV +XBy B, +nBy B, +ZV§)] Py

n=y+b {=z-a

In(yzRu + X8, 5, +,7BY'BZ +ZV§)_

(6.30)

n=y-b {=z+a

_B,5.

y

_ BBy
1- 5

F

In( YyR, +X,3xﬂy +’7V;2/ +Zﬁylgz)]

n=y+b {=z-a
where

R, =yRZ-[BxRI2 = [y2x% +y2n? +y202 + 2B, B, x1+2B,B,x{ +2, B¢ 1(6.31)
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X, y, zare particle coordinates. Here the expressiorfdure F, is recorded by
analogy withF,, as they andz are identical for a plate (see Fig. 6.1).

When the movement velocity of a point body appreado the value,, i.e.
B-1, the expressions (6.28) - (6.30), and (4.58) temchrds zero. It means that
when a moving charged body reaches the velocitglepuvelocity of electrical
action propagation, the charged plate terminatesirtfiuence on a body, and it
will move without acceleration. The given conclusi@fers to the charged bodies
of any form, as the expression for interaction éoftom them can be obtained by
summation of expressions (4.58) on all elementhexde bodies.

The expressions (6.28) - (6.30) describe the famteraction value of one
plate on a moving body. If there are any platess fiossible to write the expres-
sion for force from each plate and to integraterthin case of two parallel identi-
cal plates (Fig. 6.2), located at distancefdom each other, the obtained expres-
sion will describe the interaction force from that fcapacitor. The plate centre
with a charge ) is on the axix, wherex = - d. Relatively this plate the distance
to a particleq; along the axix will be (x + d). Similarly, the plate with a chargp
is remote from a particle at the distange- (d). Therefore, using expressions for
forces

l\y Fig. 6.2. The interaction of the flat
q rectangular capacitor on a moving
1

F charged particle;.
*+4, %
A (6.28) - (6.30), but substituting

1 the coordinatex to correspond-

ing distances, in them with al-
lowance for a sign of a plate
charge we get the expression for
interaction force of the flat ca-

/ pacitor on a moving particle

\

Z | 2 F, = F(x—d)-F(x+d), (6.32)

-

where the components of vectors in the right peetdetermined (4.17) - (4.19)
whenx is equal toX - d and & + d), accordingly.

If to direct the sizes of the capacimandb to infinity with § < 1, then the
expression for force will be saved for a motionlpasticle with a charge; only
inside the capacitor, which has a kind

Fo=-"a, (633
where o = @,/S is the density of a charge on plates of the capacithis limit
corresponds to the capacitor, at which the disténatereen plates is significantly
less than their sizes. As follows from the equatithe force is directed perpen-
dicularly to platesk, = F, = 0). The expression (6.33) is widely applied lece
trostatics. They can be used at small velocityhairged particles moving between
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the capacitor plates comparing with their size<. iBthe indicated conditions are
not saved, the interaction of the capacitor onrtigha is necessary to determine
according to (6.32).

6.2. PARTICLE MOVEMENT VELOCITY
IN THE CAPACITOR

Let's consider the movement of a charged partitlhat specific case, when
it moves along an axis x perpendicularly to a ptatd along its centre, i.g=z=
B = B = 0. In this case the lateral forces will not act @ particle and its
movement will be linear. With massand chargej; the acceleration of a particle,
according to expressions (6.28) - (6.30) and tiers® Newton's law (2.4), will be
following:

- g%ab , (6.34)
xyx2 + (- 2)(a +b?)

W= wparctg

where wy, = 4ﬂ.
C

Let us consider the obtained differential equatiotwo approximations. In
the first case we take a small veloaitpf a particle movement, i.8= wv/c;- 0.

2
As the acceleratiorw:% :%ddi (6.34) in a boundary conditiar(Xy ) = vo
X
can be written as an integral
v? —0f = 2ijarctga—bdx (6.35)

xvx? +a’ +b?

As the result of integrating by parts the equati@:35) is reduced to the ex-
pression
X

02 =02 + 2Wp{xarctg
X

where z=+vx% +a® +b?.

As the denominator of an integral is decomposethottiplicands
Z* - (@%+b?)Z? + a®b? = (z-b) (z+b) (z-a) (z+a),

Jx2 +a2 +b? z* - (a® +b?)z? + a?p?

D b (222 - (a2 +b?))dx }

Xo

then after the integration we will record the exgsien for a particle velocity mov-
ing at the interaction of a charged plane (see@:j. alongx:
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bRSaaRsb], (6.36)

02:v§+2W xarctg—+— —
XR, 2 R+a 2 R+b

where R, =4/x? +(a® +b?) , v, is velocity of a particle at a poirt= .

The expression (6.36) describes a particle movemgmnwhere action on it
by the plate will be expressed by the electrostfatices independent of velocity.
This approach in case of two point bodies corredpaa Coulomb's law.

In the second case we will take a particle withouy close to the size.

(1— B

Let's present a symbal = , and then the acceleration will be written

w=0, Zd’B 0501( du+2xuj
dx dx
In these symbols the equation (6.34) will be
2

NPT 2Wpcfarcth
dx y1+u(a? +b?)

Whenf - 1 variablesu - 0, therefore, decomposing arctg in a series of
Tailor and limiting by terms of the first order, wbtain

=0.

x2%+ 2xu+vabu= 0, (6.37)
X
where
- 8q1q25iqn(x) (638)
ec?ms

where sign) = x/| x | is signx.
The differential equation (6.37) is the equatiothvdividing variables. After
its integration at the boundary conditiBrixo)=/£5 we discover

B2 =1-(1- B2) ex;{vab(% —%)} . (6.39)

Here the integration is conducted with one sigim the whole range of its
change. Changing the signthe equation (6.39) should be applied separately o
the negative and positive segmexiend connected on their boundary. Hereinafter
we will introduce a symbol

sign(x) _ 1

x e

(6.40)
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After the substitution in (6.39) the correspondsygnbols of a particle movement
velocity along the axis of a plate will be writtes:

=cf = (cf —vg)ex Q1Q2 1 (6.41)
T

For the capacitor, where the distance between olatequal to @ and the
centre of coordinate system is located in the eeoftithe capacitor (see Fig. 6.2),
the force of action on a particle will be definestarding to (6.32) and (6.34). The
equation of movement in that approach will be redut a differential equation
similar to (6.37). As the result of its solutiorethpproaching velocity of a particle
movement fol3 —» 1 will be defined by the following expression:

29,9, 1 1 1 1
e | Joed? Jxra)? J(xo+d)2 J(xo d)?

(6.42)

It is possible to use equation (6.42), as wellad1)), with constant signs
d) and &+d). The main difference of expressions (6.41) and26from expres-
sion (6.36) is a dependence relation of incremenfta particle velocity square
upon its initial velocity. We will return to thisrgperty, when we consider the en-
ergy of a particle movement.

The other difference of these expressions is ttah fequations (6.41) and
(6.42) we come to the conclusion that the partelenot reach the velocity, which
is greaterc;. And its movement does not depend on a ratio plhte sizes or the
capacitor, and the equation (6.36) does not supeasmany limitations on size of
a particle velocity: it can be as large as thediaa.

And the last difference is that in expression (p1B& square of incremental
velocity depends on the size of a charge and nmasslinear ratio, while in ex-
pressions (6.41) and (6.42) the given relatiorutsngtted by more complex func-
tion.

All indicated differences are stipulated by thetiein of force (acceleration)
to a velocity and are unusual to classical meclsafiecause of them the applica-
tion it of energetic methods is impossible. So, ittgement of a body square ve-
locity in mechanics is the increment of energytsfrass unit. However from ex-
pressions (6.41) and (6.42) it is clear, during e¢kectrical interaction the incre-
ment of velocity square depends upon the masseofmtiole body, for example

(6.41)
02 =02 = = 2(1- B2 )ex 20&‘12{ 1 (6.43)
Mo® = = B e \/_ \/_

v? =c-(c? -v2)ex
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6.3. INTERACTION FORCE OF THE CHARGED LINE SEGMENT
AND VELOCITY OF PARTICLE

This problem can arise at consideration interaatiba charged line segment
or charged wire with a particle, when the distabeaveen them is more signifi-
cant than the diameter of a wire. In this casewtine can be described as the sec-
tion of a straight line (Fig. 6.3) that is locatsldng the axiz. If the length of the
segment is & and the centre of a coordinate systeymis located in the middle of
the section, then by substituting
£ - 0 in expressions (6.28) - y
(6.30), describing the action

the section of a straight line. 0 &

F
from the plate with width 12 >»
and length 3, we will receive q, %
the expressions for forces from ;
1
x:

Fig. 6.3. Interaction of the charged
section on the moved charged parti-
cleq;. @

After transformation of expres-
sions the force on a moved parz
ticle with a chargeqg; will be
written in a vector view:

|Z=z+a

Iszoa, ﬁ(xﬁxﬁz+yﬁyﬁz+y§()—RR\g
€RV (1—,83 )X2 + Zﬂxﬂyxy+(1_ﬂf )yz‘(:Z_a,

(6.44)

where
R, =yR? ~[BxRI” =,[y2x2 +12y% + /20 * +2B,B,xy+2B,B,%¢ +2B, B,y

R=ix+]y+k¢:;

Q = q/2ais a linear density of a charge of the segment,gaiis its charge.

From expression (6.44) it is seen, that the sizéhefsegmena and the ar-
rangement of a particle in relation to the segneantconsiderably change a direc-
tion of force on a particle at the same distandevéen them. When the segment
has a large length this influence decreases. loet'sider force (6.44) in a limit
whena - oo, and the velocity of a particle /&< 1. In this case, when length of a
charged wire is considerably exceeding a distam@eparticle, the expressions for
projections of the force to a particle look like:

_ 2Qa, X
Fx £ (1_[35))(2 + Zﬁxﬁyxy+ (1_ ﬁf)yZ ! (645)

110

- Qa, y
Fy £ @a- ﬁi)xz + Zﬁxﬁyxy_l_ (1_[33))/2 ’ (6.46)
F,= 200,53, ~XBy ~ yIBy (6.47)

£ (-BX*+2B,B,xy+A- B2y

In formulas (6.45) - (6.47), as well as in the egzion of force (6.33) in the
flat capacitor with indefinitely large plates, litimg transition on the sizes is car-
ried out atg3 # 1, therefore they can be applied at small velesitf a particle
movement, i.e8 < 1. In that specific case of radial movemsnt ¢= 3, = 53, = 0),
according to (6.45) - (6.47), the force along ais ®acts only:

2
:—ZQ"ﬂgV)l( P (6.48)

In this case when the particle approaches the iglocthe force tends to zero as
111—,82 , i.e. it is weaker, than during the interactiontwb dot particles. How-

F

X

ever it can be stipulated by the error of a passagee limit ata — co.

With small particle velocitie§ << 1 the projections of the force size from a
long charged wire on a particle, moving with smalocity, according to expres-
sions (6.45) - (6.47), will be written as

2Qq X
Fo=—t_ =% . 6.49
X £ x2+y2 ( )
Q0 vy
F, = . 6.50
I (6:50)

The above-mentioned expressions, as it is knovenused in electrostatics.

Now we will consider the movement of a charged ipertalong an axis,
which is located to a perpendicularly charged sectind begins in its middle (see
Fig. 6.3). In conditiony = z= £, = = 0 and according to (6.44) the size of force
on a particle will be

F =224 p2) / (x5 +(1- g a | (6.51)

&

The precisions expression (6.51) differs from agjpnate (6.48), obtained for an
infinite section.
If m - mass of a particle, according to the second Newtlaw (2.4) its ac-
celeration is
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w= (- 42 emf +(1- B e | (652)

To define the velocity we will decide approximatehis differential equation.
Let’s consider the case of a particle velocity elts the size,, i.e. 5 ~ 1. Ne-
glecting (132 in a denominator (6.52), we will rewrite it inishwvay

ﬂ _ 204,0,Sign(x) ot —v®
2 2

dx £mey X
The obtained differential equation with apportionediables at limiting condition
v(Xo) = vg gives the expression for velocity of a particledted under interaction
of the segment, as

200, 1 1
emc? | \/x2 \/X(TZ

As we can see, the last expression completely it@acwith (6.41) for a
plane. Those conclusions, which follow from expi@sg6.41), are also true for
the segment.

We have calculated the force of action on a moeimgrged particle, and also
its velocity of movement, if the other particleaf@ or wire act on it. Using the
offered method it is possible to define the infloerfrom charged bodies of any
form, and also from the combination of such bodidse obtained expressions at
small velocities of a particle coincide with knownPhysics. On the other hand,
from the obtained expressions at large velocitiésllows, that as the result of an
acceleration of a charged particle by any bodiearinot exceed velocities.

v® =¢ = (¢ ~vg) exp

(6.53)

6.4. FORCE OF MOVING CHARGED
PARTICLE ACTION ON MAGNET

The motionless charged body does not interact widignet or with a con-
ductor, along which the current flows. But duritginovement such interaction is
observed. We will calculate its force in some sncpises.

The interaction of a dot charged body on magneletermined by d'Alem-
bert's differential equation (3.34). In projectiasind coordinates axes it will be

written so:

Hy, = —4%7(%'002 _%DVJ;

y = —%T(f—i’jvx —f—ﬂ(’oz)z]; (6.54)
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a7 ( o 17/
H z = _T(Epl)y _Epl)xj.

Let's compare the right members of d'Alembert'sadqos (6.54) and (4.6)
for E. If we multiply the right members of equations6yby the components of
velocity and we make differences of a type

_ ~ _dm( dp ap |_ U
,Eyl)z _,Ezl)y —?(‘?—yl)z _Zl)yj - _C.L\/;DHX'

then we will receive
_ /5
l:HX + Z (B, Ey —,ByEZ)} =0.

As this expression is fair at any values of vaeabl

Hy = —\/%(ﬁz Ey _IByEz) . (6.55)

We shall receive the similar expressions for reingitomponentsH , there-
fore in a vector view we can record

A= |E1pxE. (6.56)
u

So, the solutions of equations (4.6) and (3.34}6054) are connected with
expression (6.56). From here, substituting in (p&@utions of an equation (4.6)
for electrical interaction of a moving charge (4,58e discover the force of action
on a unit magnetic pole

g @=BIBXR
\/E{RZ —[BX §]2}3/2

where R is a position vector from a moving body with a igfeeqg, up to a unit

(6.57)

magnetic pole, and@’:l is a normalised velocity relatively this pole. fgd-
G

lows from expression (6.57), the charged body damsinfluence on magnet at
rest (3= 0) and with movement velocities, equatto

Knowing magnetic intensityH and using a expressiof = MH , it is easy
to define the force on any small magnetic pole wittmhagnetic charg®l. If the
magnetic pole cannot be accepted for dot, it caditieed into elementary seg-

ments with a magnetic chargéM and, by integrating the force on all the seg-
ments, we can calculate it onto the whole magne:ticely.
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6.5. FORCE OF ACTION OF POINT MAGNET
ON A CHARGED PARTICLE

The force of interaction of a point pdié on a particle is opposite to the a di-
rection of interaction force of this particle opaint pole and, according to (6.57),

in case ofRy, = —R looks like

- B2\ B%R
- Mg, = B7) B> Ryg] ' (6.58)

q \/E{RMqZ "[Bx 'ivvlq]z}?)/2

where ﬁMq is a position vector from magnkt up to a particley;.

But if in a particleq; place there was other point pdl, the force of inter-
action of a polév on it would be expressed as Coulomb's law:

- MIM,R -

£ =MBMRug _ gy (6.59)

3

Ruq
where

_ MR
H= “gq : (6)60

RMq

H is an interaction force of a point magibn a unit magnetic pole, located in
a particle place. The valuel will be called as magnetic intensity. Substituting
M IiMq from (6.60) in (6.58), we obtain the expressionifderaction force of a

point magnetic pole on a moved partigle
£ __G0-BFIRGBxH]
(R, 1B xR 7}

(6.61)

6.6. FORCE OF ACTION OF CONDUCTOR WITH CURRENT
ON A CHARGED PARTICLE

As everybody know, the conductor with current aotsa magnet, for exam-
ple, on the magnetized hand. We have already ugeckssion (3.3), which ex-
presses the interaction force of a conductor segferwith currentl on a unit
magnetic pole. The formula (3.3) characterizes ratignntensity. If instead of
magnet in the same point in relation to a conduitahere is a moving charged
particle q;, the force of action on it, stipulated by intepdit, is determined by
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expression (6.61). Excludirtd from these two expressions, we obtain the interac-
tion force of a segmentl conductor with curreriton charged particlg, as:

JE = M6 (- ) x4 xR]] (6.62)
q CZ{RZ—[Bxﬁ]Z}m ’

Here s = BL¢, is a velocity of a particle relatively a condugtand Ris a position

vector from a conductofl up to a particle. The expression (6.62) allowsrdef
the interaction force of a direct conductor withrreat on a moved particle. With
this purpose we will consider a conductor with lgn2g, in the middle of which a
centre of coordinates is selected, and the aigsdirected along a conductor in a
direction of current. If coordinates of a particle arxg y, z,the distance from the

elementAl up to a particley, will be
R=ix+ jy+ké&, (6)63

whered= z — lis a lengtH which is counted from zero in a direction of aisax
The double vector product in (6.62) can be wrigen

{Bx[dl”x F”e]} = di (BR) ~ RGA) = dI[k (3B, +yB,) ~ B.(x+ Ty)]
By integrating force (6.62) on all segments of adiwetor, we can record

(6.64)

‘_ \ﬁ lg, @~ B)KB, +vB,) - B,(x+ |2 dl
£ c J(@a+bl +?)%%"’

where
a=yix> +yiy? +2B.Bxy, b=2(B,Bx+B,B,Y), c=y:. (6.65)

Asdl = -d{ (, and the integral, according to [24], easilisiiuthorized, the
force (6.64) will be

{=z-a

e m ko, +98,) B x+ kBL w8 B0 oo
£

(1~ BH)x* +2B,B,xy+ A~ BL)Y°IR,

|(:z+a

whereR =/R%-[ BxR]?, R=ix+jy+k{.
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After introduction of a current vector = Ik and fulfilment of return vecto-
rial transformations, the force of interaction afedt current on a moved charged
particle is obtained as follows:

£ o M BB+ YB By + y2)o <[ xR]]
¢?R, (- B2)E +2B,B,xy+ (1- B2)Y?|

| {=z+a

(6.67)

{=z-a

From this expression it follows, that the force sloet act on a particle, when the
particle restsg = 0) and when it moves with velocity, i.e. 5= 1.

If the particleq, moves perpendicular to a conductpr(8, = 5, = 0) accord-
ing to (6.66), the transversal force will act on it

= =/AQ10x(1_ﬁ3) Zz+a _ Z-a
z 2
xR+ -pAEra)? X+ (- Bz 2)
(6.68)

When the particle is in a mean plaze=(0) the force of action on it, according to
(6.68), is directed to the same side, as curremtas though a positively charged
particle is move by current.

If the velocity of a particle concerns a circlewhich centre and perpendicu-
lar to its plane the current is located, the doweletor product in (6.67) is equal to
zero, i.e. the current does not act on a partiolated round a conductor.

When the particle moves parallel to conducior (3, = B = 0) forces is di-
rected on it perpendicularly to a conductor andéhkimd

g z+a z—-a
Fo=-H 21 2| — _ ———— - - (6.69)
X (2~ A +(z+a)? X2~ B2)+(z-a)
In a mean planezE 0) forces (6.69) will be written so:
Fe=- 2H% 2, : (6.70)

” czx\/(l— BHX* +a?

i.e. positive charged particle, which moves in rection of current, is attracted to
a conductor. Approaching to velocity (in case off3, — 1) the force of attraction
grows. Such an action is also observed during tiberaction of two particles,
when the relative velocity of a particie is perpendicular to a distand@ be-
tween them (see Formula (4.58)).

If the conductor is longag > x) and the particle moves at distaxce d from
it, the expression for force, according to (6.%d), be

116

2
-2, 6.71)
cd
This equation reminds the expression for the ictera force of the conductor
with currentl on the other conductor with curreinf located parallel to the first
one:

F. =

X

e 2Ny
X cid

: 6.12)

wherel is a length of a conductor with currdat on which forcer,. acts. In ex-
pressions (6.71) and (6.72) the forces coincidbetdirection, and also in size, if
Qivz = I1 [

The interaction of a conductor with current on atipk differs from the in-
teraction of a charged conductor. So, when theiglartmoves parallel to the
charged conductoy & 3, = S = 0), according to (6.44) the conductor acts doyit
a transversal force

=23 R 6.73)
EX| X2 @-p2)+(z+a)? |x2(-B2)+(z-a)’
and a longitudinal one
_n2 _ 2
FZ:_qu 1 :82 1 ﬁz (674)

e\ Ra-p)+(z+a) -2+ (z-a)

In a mean planez(= 0) when the length of a conductor is greaser(«) the
longitudinal force disappears, while it exists @wrrent (see (6.68)). The expres-
sion for transversal force whers d and at small velocities

2Qq
EX

is similar to expression (6.71) for transversatiiattion force of a conductor with
current, but there is an essential difference: dh&rged conductor repels of the
same name charged patrticle.

The solenoidal magnets in which the spool is derigg many layers of a
ring-type coil conductor, find the greatest applma Let us investigate the inter-
action force of a ring-type coil conductor with rmt| on a moving particle. In
view of mathematical complexity of this problem, wdl consider a particular
case, when the particle is located in the centra ohg. If the axiz is directed
perpendicularly to a plane of a ring, the centra ebordinate system is located in
centre of a ring so that the current is directetnfian axix to an axisy, the inte-
gration of expression (6.62) will lead to the vatidorce action on a particle as

F =

(6.75)
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2

3

£ = My [5xK]
2
c°R

J1-n?sin®ydy, (6.76)
J1-82

whereK is a unit vector of an axis Ris a radius of a ring,
BB
1-p;

o t—

As it is seen from expression (6.76), the forcdiiscted perpendicularly to
velocity of a particle in the centre of a ring-typeil conductor. The expression
(6.62) can be rewritten as following

gy [0 xK]
cR 1-52
wherep varies in limits fromp = 77atn® = 0 up top = 2 atn? = 1, i.e. the factor p
varies unsignificantly in the whole interval of hangef from 0 up to 1 (just so a
changen corresponds to a change

For small velocitiesf&<< 1; 1 -3,% = 1; p = 7) the expression (6.77) gives
the same result, which is used in Physics and Eeging to define the interaction

force of an orbit with current on a moved partidReally, as for a circular orbit
magnetic intensity is

F=2p

(6.77)

H = ZL”‘, (6.78)
ck
and Lorentz's force
E = ,uql[l; xH] 9

determines a magnetic action on a particle, thetuding H , we obtain the in-
teraction force of a ring-type coil conductor opaaticle

= _ o MG -
F =25 xk]. 6.80

This expression is fair at small velocity of pad& At subluminal velocities
instead of a factor it is necessary, according to (6.77) to use af&li = 4, and
also the relation to an axial velocjfy. For particles located not on an axis of ring-
type coil current, it is necessary to integrat@ g% numerical methods.
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6.7. SIMPLIFIED FORCES DISREGARDING FORMS OF ACTING
BODIES

Now in electrodynamics the method of calculationaofions on a moving
particle, which does not depend on the form of eiing body, is applied. They

consider valuesE and H in a point where there is a particle and depending
them determine force of action on a particle. itassidered that an electrical field

E and magnetid:| are created by the charged and magnetized bodidghase

fields act a moving particle. Therefore the samieesE and H , stipulated by
bodies of different forms, act on a moving particléhe same way.

Let us research ratio, obtained by us, for exardphing the interaction of a
point magnet. The force, according to (6.61), dlwritten

E =k, ,UQ1(1C— ﬁz)[ax =} (6.81)

where

R® 1
K, =¥={1_[/}xﬁ/ R (6.82)

Herek, is determined particle directions of arrangemert mmovement relatively
a point magnet.

In case of a ring-type coil conductor with currénthe interaction forces of
action on a particle (6.77) with allowance for . Will be

F=k, 21 _[5xHA], (6.83)

oy1- 32

wherek,; = P/rris determined by a particle directions of arrangetrand move-
ment relatively an annular conductor with curréntspite of a particle being in a

point, these bodies create identical magnetic siterH , the forces of their ac-
tion on a moving particle (6.81) and (6.83) differ.

The similar situation is observed for the interactof charged bodies on a
moving particle. For example, the interaction foof@ particleg, on ag; particle,
moving relatively it, according to (4.55), can leearded as

F=k,0@-B%)E, (6.84)
where
= _ Q2§
E=—. 6.85
= &5)

Here E is an electrical intensity, created by the paetiglin a place particle be-
ing g;. In case of action to a particle of another foimarged bodies for example,
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charged of a thread, according to (6.44), the esgiwa the force depending on

intensity E will differ from (6.84) another value of a geomietfactor k, and,
probably, additional multiplicands.

The mentioned examples (6.81), (6.83), (6.84) shbat, in case of interac-
tion of any form body for precisions calculationfofces it is necessary to con-
duct the summation of all its elements actions utide law of interaction of two
point bodies. In case of magnetic action the foameording to (6.81) and (6.82),
will be written so:

2 3
L (Gl RIPN f%dﬁ , (6.86)
c IR

whereM shows the integration on the whole parameterd@izetionM. In case of
interaction of a charged body, according to (6.84) and (6.82), the force

— 3 =
F=a-)[ S
E

6.87
= (6.87)

The valuek, = (R/R,)*, included in integrals, at small velocity is eqiala
unit. Parametek, can much differ greatly from the unit at largeogity (8 - 1),
if it is perpendicular to the line connecting theeeracting particles. During the
integration of action from all elements of a bodgls situation arises only for a

limited number of elementdE or dH . Therefore it will not influence greatly on
the total interaction. Therefore, the integral§6r86) and (6.87) can be replaced
by the approximate expressions

J-k,,dl:l ~H andjk,}dE ~E, (6.88)
M E

where both magneti€ and electrical intensityd are created accordingly by a
magnet and a charged body in a point of a movintjgbe being. Then the ap-
proximate expressions for magnetic and electricsioas on a moved particle
without dependence from the form of acting bodiesoading to (6.86) and (6.87)
will accept a form

ﬁ:ﬁﬂ%?ﬁiwxﬁL (6.89)
F=q@-B°E. (6.90)

These expressions can give large errors when 1, if the velocity of a particle is
perpendicular to greater part of points of actiglyo In that case exact expres-
sions (6.86) and (6.87) should be integrated. Th@essions (6.89) and (6.90)
differ from used in electrodynamics by availabiliofy a multiplicand (1 —5).
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When a patrticle velocities approach to light spé@d- 1), the obtained expres-
sions show that the force of action on a partietels to zero.

The expressions, deduced by us, for forces of maiim a moving charged
body are based on the results of two groups of unea®nts. The first measure-
ments pertain to evaluation of force between thergdd motionless bodies. Their
generalization is Coulomb's law (3.1) for electricaarges.

The second group of measurements pertains to teation of interaction
between a conductor with current and magnet. Exprggheir results as the in-
teraction force of a conductor on magnet Biot-Savdraplace's ratio (3.3) fol-
lows. The experiments on rotation of the chargestt §Ahenvald's and others ex-
periment) are used for the substantiation that,ttteemoving charged body during
its action on a magnet is equivalent to a conduwitlr current. Taking it into ac-
count in expression (3.3), we come to the inteoacforce of a moving charged
body on the magnet circumscribed by the second Mieiequation (3.22). If to
express the results of the second group of measumtsnthrough the interaction
force of a magnet on current, and current - throonglvement of a charged body,
we will receive a ratio for interaction of the magron a charged body, moving
relatively to it, as the 1-th Maxwell's equation2®) and as Faraday law of an
induction (3.5). It is necessary to mark, that imddly equation (3.5) was calcu-
lated by measurement of EMF, induced in a closep lduring a magnet move-
ment.

Thus, the expressions for force of action on a mg\particle are deduced
from the experimental facts. There is a long wayé ratio into the other one
transformations, a transition from some valuesh® dther from the results of
measurement to the final expression. It is possithlet during the intermediate
operations any assumptions were made. In this ationewe could name abso-
lutely valid such relations for forces of action ammoving particle, which would
be defined as the result of direct measuremenistefaction forces of a magnet
and a charged body on a particle or its measurenaoéran acceleration.

CHAPTER 7

APPLICATION OF THE METHOD OF FORCES
FOR CALCULATION OF DIFFERENT INTERACTIONS

7.1. ENERGY OF INTERACTION, WHICH DEPENDS ON
VELOCITY

A characteristic peculiarity of the charged and nwiged bodies action
forces on a moving particle is their relation frenparticle velocity. The calcu-
lated particle movement velocities, as it is seemimf equations (4.80), (6.41),
(6.42), (6.53), can be recorded so:
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2040, | 1 1

2 - 1
EMeCy \H’2 ﬂl’o2

wherem, andr have a certain kind for a particular acting bdélgr example, dur-
ing the action of a point body with a chaxgeand a massy,

2 (in
r= R2 —h_’ mre :L. (72)
¢t m +m,

The kinetic energy of a moving particle at the pojiis equal toE.= mp,%/2,
and in a point E. = mp%2. According to (2.24), the work of the action force in
increment of a particle kinetic energy is equahtmss of potential enerdy at a
pointr in relation to a pointy:

v? =cf =(cf ~vg Jexp

(7.1)

2
2
A=AE, =E,~Ep=U=-"0 L1 gyexpoidz | 1 1 |4
2 EM,Cf \/r_2 \/E
(7.3)
It follows from here that the potential particleeegy depends on its initial veloc-
ity. Thus, each point in a neighbourhood of anracthodyr, has not ability to
give a located here body the same energy, asaitdepted consider in physics.
During the movement from this point the differeneggy will be given to a parti-
cle depending on velocitff, coming exactly to a poimt of a particle. Besides, the
relation of energy to mass and value of a chargmisual. The full energy of a

particle, according (7.1) and (7.3), will be
2

mo
Ef =E.+U =T°=const, (7.4)

i.e. the full energy of a particle in relation t@aintr, is equal to a kinetic energy
at this point and remains constant during a partiebvement.

For forces dependent only from a distance betwa&racting bodies, the
potential energy according to expression (4.83)rwhe 0, will be recorded so:

U=-A=-aE, =M% 1 11 (7.5)
° em, \R R,

i.e. the potential energy is characterized onlyabgarticle position. Taking into
account the difference between a potential enef@) ©f a moving charged body
and potential energy of a body (7.5), caused byl@oh's force, the energetic
methods of mechanics for calculation of chargedédsothteractions are necessary
to conclude with caution. The omission of theseupadties in the Theory of
Relativity and some other sections of modern plsysave led to the emergence of
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contradictory conclusions, including such phenomasanfinite mass and energy,
imaginary energy and mass etc.

In modern physics the energetic method of intevastihas practically com-
pletely superseded the method of forces. This denation was greatly promoted
by the notion about the energy of substance. InTtieory of Relativity the ex-
pression for energy of object with massnd velocity is used

mc?

V1- B2
whence with3 = 0 the energy of resting object follows
Eo =mc*. &Y
This expression has not physical explanation. lstttsv that it follows from main
rules positions of a classical mechanics.

It is considered that the relation (7.6) is expemmally confirmed during the
research of nuclear transformations and procedsasrhilation. It is supposed
that the collision of an electron and positron,tpnoand antiproton conduces to
radiation of photons with velocitg. If there was an antimatter, the contact lead
with substance would lead it to in collision of peles and antiparticles and,
therefore, to transformation of two such objecta ifiow of photons moving with

the velocityc. Therefore the internal energy, = mc? of an object is possible to

understand as its ability to radiate the substavittelight speed.

Let the object with the initial masg, reject the substance with a constant on
velocity at the value and directianof a relatively remaining part with mass If
the consumption of the thrown off masglig/dt, the remaining parn ia acted by
an implying jet with the jet force

E=

R=uI™ (7.7)
dt
Then the equation of a remaining part of object em&ntm, according to the
second Newton's law (2.4), will be recorded

do
m— =R. 7.8
pm (7.8)
After a substitution of the jet ford@the differential equation is the following:
mdo = udm, (7.9)

known as Mesthersky's equation. Deciding (7.9) mmnyeconditionsm = my, when
v = 0, we will receive Ciolkovsky's formula

p=unlb (7.10)
m

which determines the velocity of a decomposed glaaih object.

Now we will consider what energy has the objegt if it completely breaks
up with velocityu. During decay the forc® will act on each element, which
makes work

dA=Rds.
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The energy of the object will be equal to the waltng the whole path of the de-
cay:
E, = A= [Rds=[ Rodt.

After a substitution of jet forcR (7.7), we obtained
M
Eg=u|odm.

0
Now with allowance for (7.10) we can record

My
E, =u? jlnﬁdm= mou? .
; M
If the decay is made with light spead c, the energy

Eo=mec?. 17

7.2. NEW INTEGRALS OF MOVEMENT

The expression for velocity (7.1) with allowance 6.2) can be rewritten as

- 20,9, —(n2 .2 - 20,0,
(c? —vd)ex = (c? —v?)ex .
£mrec12 V Rg - (hlcl)z 5mreclz\[ R? - (h/Cl)Z

(7.12)
In left and right parts of equality the expressi@me identical, but relate to
different points of a body trajectory, i.e. the rerinal value of this expression is
identical to all points of trajectory and is sawhgting the movement of a body,
i.e. the parameter of movement
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2JR? - (h/ c,)?

S=(c? -v%)exd - = const. (7.13)

For Coulomb's forces, according to (4.83), it ®bgbossible to record an identity

2 2
+ﬂ+h_:12 +2/11+h_

D — )
R R2 ro R) RO

2
of

which after introduction of full velocity? = v% + v% receives the following form:
B2t 2, 2 (7.14)
R Ro
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As in the right and left parts (7.14) the expressiare identical, but relate differ-
ent points of trajectory of a body, then similaidy(7.13) it is possible to enter the
parameter of movement for Coulomb's forces

S =v? +2—|gl = const. (7.15)
Let's consider the connection of integral param&terith the conventional pa-

rameters of movement. According to (7.5), the pidéenergy of a particley in
relation to an indefinitely remote poirR{— o) will be

U, = ml:l . (7)16
Then the full energy of a particle will be recorded
E —E sy =M’ M _ Samy
fo 77T T R 2

From here we obtain
_ 2E;,,

T om

: (N17

i.e. the integral of movement of a parti§eis the double specific energy of a par-
ticle in relation to an indefinitely remote poifthis value, as well as the full en-
ergy of a particle remains constant during movemeatces of action dependent
on velocity the parameter of moveme®tdefined by ratio (7.8) according to
(4.58), cannot be expressed through the energy.48)( Nevertheless in a physi-
cal sense it possible to compare it with the patang:

In a number of cases the action on a charged Impygssible to describe by
the forces, which are not dependent on its velaniy considered point [54]. With
this purpose the action of a point body is reseatcifhe acceleration, created by
a charged particle is described by expression J4Bde to its solution the radial
velocity of a particle (4.80) and transversal ofre h/R depending on its distance
up to an acting body and a velocity in an initialmi was determined. Let's differ-
entiate (4.80) on time and, taking into accourdt dir/dt = v,, we receive

do, _d’R_h?  mRA-f7) 24 1 _ 1 _
JR? =(hic)?  RZ-(hic,)?

dt dt2 R3 (RZ _(h/cl)2)3/2 f Cf

Then the radial acceleration in a polar coordisgstem will be recorded

- e
W, :B[d_zR_sz]: 2/'11(121802)R3/2 ox 2_;;1 1 ~ 1 |
R\ dt (R*=(h?/c?)) ¢ | JRE-(hicy)? \/ROZ—(h/cl)z
(7.18)
and the transversal one, wheR? = h, will be
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_Ld(erR?)

Wtht

Therefore, the full acceleration of a particle iiedted on a radius, which is going
out the attracting centre, and is equaiie= W, . Multiplying (7.18) by a particle
massmy, we will receive a new expression for the force as

-
F= Mo FoR 02t CE— . (7.19)
(R*-(h?/cf)) (YR -(h?1c?) Ry -(h?/cd)

The equation (7.19) represents a point body fofcaction with a charge,
on other point body with a charge and the massy, which moves relatively the
first one and at any initial distan&® from it has full velocityng = £c; and per-
pendicular tdR, it has a transversal velocity equabte h/R,.

Expression (7.19) includes only the initial velgcdf a particle movement,
which is constant. Therefore the given expressiopossible to consider depend-
ent only from a distance. As well as to any fordependent on a distance, force
(7.19) should correspond to a potential energhénequation

F =—gradu . .20)

Indeed, the operation (-grad) conduces to a equéfid9) for force from expres-
sion (7.3) for potential energy of a particle.

The force (7.19) facilitates a problem of movemergkulation by the fact
that the solution of difficult differential equatis is substituted by the integration.
However, the kinematic angular momentum of a moyiagicleh = »R = const,
which concerns only the interaction of two pointles, is included in expression
(7.19). During the action of the other objectssinecessary to considerto each
element of such an object. As at the angletween andR the transversal veloc-

ity v, =0 3in@) = 1)|[5>< §]|/1)R, then
R?-(h?/c?)=R?-[BxR]?. (7.21)
With allowance for (7.21) expressions for forcel@).become more universal:

- 32)R
|§: /jlml(l BO)R 2/11 1 1 (722)

— exp—-— — - —— y
Re-1xr? o | JR-1BxR? R -1BxRo)’

however it depends on a particle movement velocity.

7.3. METHOD OF VELOCITY SUMMATION

Let's consider a method of calculation of a pagtiovement velocity, when
the force is not used. It allows defining the vilpof a body given to it by any
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device with the similar character of action havimgwn the expression for veloc-
ity, which one point body due to action gives tbest We will demonstrate this
method on the example of two charged bodies intieracAccording to expres-
sions (4.14) and (7.2), the central body givesdtier point body with massy,
and electrical chargg the velocity, which is described by expression

v?=cf —(cf—vé)exp—z‘z’l L - ! (7.23)
o [ JR-(h?/c?) Ry -(h?/c?)
If to designate
=2t ! (7.24)

of JRE-(h?/c?)’
that value of velocity will be expressed by the a&gpn
02 =c? - (2 -v2)expP-A,) . (7.25)
In order the symbak has not depended on a kinematic angular momehfume
use the replacement (7.21)

2
2=24 2 1 . (7.26)
& YR -[AxR]

The expression (7.25) determines a particle movéwancity depending on the
difference in the values of a functidnin final and initial points of trajectory. Ap-
parently, if to calculate valuek created by any body, then using (7.25) it is pos-
sible to find out what velocity it will give to aapticle in case of movement from
one point to other.

As an example, we will calculate the velocity aftearged particle, which is
forced by the rectangular charged plate. It is ipess$o record symbaod, accord-
ing to expression (7.26), for an elementary pai pfate with a chargéqg, in the
following way:

dr=—2% o, | (7.27)
eeimy \[R? - [ Ax R

whereR is a distance from an element with a chailge up to a particle with a
chargeq;, which velocity we compute. The movement of aiplrtwith masamn,
relatively a plate with massy,, thereforem; << m, is considered here. We select
the axes of coordinates in the same way, as in @hsgaluation of expressions
(6.28) - (6.30) for forces (see Fig. 6.1): a begigrof coordinates in centre of a
plate, the axix is perpendicular to it, and remaining parameterswill designate:
n=y-%,;, {=z-12;YVs, %zare the coordinates of an element of a plagex, vy,

zare the coordinates of a particle R=ix+ jn+ k¢ .

Charge of an element of a platg, = odnd{, where (d7) and (d{) are the
elements of the area in a direction of ayemdz accordingly;o = g, /4ab is the
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area density of a plate charge. Then the symboteated by the whole plate, will
be equal to
n=y-b{=z+a

20,0 j dndd _
goymy =y ¢=z-ay|R? -[B*R]?
After a deployment of a denominator the integraltiplicand in (7.28) has a kind
z-a Zyja d/7
ja yra VX2 + YRR+ 2B, 8,8 + 2B, (Bx+ B+ yEn

A=

(7.28)

The integral om is a tabular integral. After transformations amthgitution in
(7.28) we have

/1=2q—10j|n[A+ BZ+x/C+ZZ}dZ

ectmy,y,

n=y-a
, (7.29)
n=y+a

where

z= [ fz (ﬂxxwyn)}n,

2
C=y2x2 +y2n? + 2B,8,xn {%(BXH ﬂyn)} :
z

A:yy{ By ﬁyﬂz(ﬂxwﬁya)}
Vy yyyz
BB

VyV.

The integral org, included in (7.29), is reduced to an integral §.after inte-
gration by parts. After fulfilment of transformatie its solution will be recorded

as
jln[A+Bz+\/c+zz}dz=—z— In[Z+\/C+ZZ}
+ZIn[A+ BZ+x/C+22}— BA2 In[A+ BZ+x/C+ZZ}+ (7.30)
C(1-B?)-A? { CB-AZ AB+(B2-1)Z }
arctg .

arctg
1-B? Jc(1-B2)-AZyC+2? JC(1-B2)- A2

After a substitution of a value of an integral (.30 (7.29) and change of vari-
ables is obtained the following expressionAds obtained:
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B=

20,0 XBy By + 1A~ B7)

In(yZRV + X,BX,BZ +’7ﬂyﬂz + ny)-l-

“edm - B 2
_ p2
+ Xﬂxﬂz +yZ(1 BX) ln(nyv + Xﬁxﬁy +/7y)2/ +Zﬁyﬁz)+ (731)
y

_,_n{=z-a
X2By B, = x1By B, =N~ BF)~XB, By

XR
0

+ X arctg

whereR =/R?-[BxR]?.

The expressions (7.25) and (7.31) determine thecitglof a charged parti-
cle, which the charged plate affeclg.is calculated according to (7.31) in an ini-
tial pointxo, Yo, Zo and with initial velocityoy, vy, v0. However, here there is a
number of difficulties. At first, the expression.Z8) determines only the module
of velocity in a point, y, z but the direction of velocity is not known. Sedbn
equation (7.25) does not express the velocity inkanous kind, as the included in
the right member symbal depends itself on the velocity in a poity, z,as it is
seen from (7.31). Besides, the knowledge of a ¥glammponent is required
which is unknown. So, in a common case the veloaita particle is not deter-
mined by this method.

Let's consider a particular case of a particle moat perpendicularly to the
plate along an axis y =z= g, = 3, = 0 andB = 3. Under such circumstances the

parametenl, according to (7.31), after a substitution of tendns; and accepts a
kind

ab(l- B°
J= - 8H9 x arctg 4-s )+

ecim (- B7) xR,

le ,5’ RV a\/l B? a\/l—,B RV by1-4° (7.32)
Rv+awll B? 2 Rv+bV1 F

where R, =/x2 + (1- £2)(a® +b?) .

At small velocity of movement or whery — o, as you can easily be con-
vinced, the equation for velocity (7.25) and (7.8R)e expression (6.36), which is
obtained due to the solution of a differential daopra of a particle movement
(6.34) when a plate acts on it at a small veloofta particle movement. At large
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velocities S - 1 the limit of expression (7.32) give/kzﬂ. Then the
ectmpy x?

equation (7.25) is transformed in (6.41), whiclthie solution of an equation of
movement (6.34) wheffi » 1. Thus, expressions (7.25) and (7.32) are thdieal
of an equation (6.34) in two limiting cases. Froanehit is possible to assume, that
they will be the solutions (6.34) at other valy$go0. By the considered method
the solution is obtained not in an obvious kinde tkequired value - velocity -
enters in a left-part and a right part of the eigma(7.25). Nevertheless, it is not
obviously possible to decide an equation (6.34dtyer method.

Let's consider now some new results. Let partiobwverfrom infinity (o —
) to a plate X » 0). Then it follows from the equation (7.32) wher xo, that
the lim A,=0. It is necessary to consider a limiting passag¢x — 0, consid-

Xg —
ering thatx < (1-8 3(@%+b?), i.e. it will probably, will be unfair a8 -~ 1. Then
from (7.32) it follows

P 1= 0.9 vaZ+b? -a a’+b%?-b
limA=- bin +aln .
-0 eZmaby1-g2| al+b? +a VaZ+b? +b

(7.33)

For a square plata & b) with allowance for (7.33) the expression for ity of a
particle, according to (7.31), will be recorded

2q,,In(3+ 24/2)
emcay1- 5

v?=¢f - (cf —vg) exp (7.34)

During the attractiony;q, < 0, therefore gf — 1 the second addend tends at zero,
i.e.v” - clz. Let's introduce a symbol for the parameter cdriattion

_20,9,In(3+ 2\/5)

B, = 2
gcima

(7.35)

Then the adduced velocity of a particle moving fgate from infinity, according
to (7.34) can be recorded as

,6’2=1—(1—,6’§)ex;{— By J (7.36)

V1- B2

In these symbols for Coulomb's interaction, asofedl from (6.36) ak, —» oo
andx - 0, the velocity of a particle at a plate will be
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B= B +Bi, 7.37)
i.e. from here one more physical sense folloBisis a square of a particle incre-
ment adduced of velocity during Coulomb's inte@ttiFrom (7.37) it is seen, that

at 5, = 0 the value iB :\/E. At B; = 1 the particle moving from infinity with

initial zero velocity approaching a plate will gadight speed.

Except implicit expression (7.36) the asymptotitugon (6.39) atf — 1
was obtained for the action of a charged plate particle. The expression (6.39)
has a peculiarity at = 0 and gives a light speed when a patrticle cositaith a
plate at any chargg of a plate. It is connected with the peculiaritigs limiting
passage of an addenti(1-5) during simultaneous rushing— 1 andg - 1. To
compare the results of the equation (7.36) to ésailts (6.39), we will consider
the movement of a particle from infinity up to atdince in the latter case

a
X,=———  =0567a. (7.38)
® In@+2v2)

Then, according to (6.39), with allowance for (.8t adduced velocity of a par-
ticle reaching a distanog will be recorded as

B =1-[- B2)exd-B,). (7.39)

In Fig. 7.1¢ the results of the equation (7.36) solution afedént values of
adduced velocity is shown. It is seen, that wittréase of initial velocity3, the
same value of the parameter of interactinleads to decreasing increments of
velocity. At 5, = 1 the schedule is shown by a horizontal liree,the velocity of a
particle is not increased.

All curves in a Fig. 7.5, do not reach the valyg= 1. In the area from some
value S up to 3 = 1 the solutions of the equation (7.36) have detties: there
can be some solutions or there cannot be any oowettr, all curves have the
general solutior3 = 1 atB; = 1. That is at this value of the interaction paeter,
the particles reaching the plates, will have ligixted.

In Fig. 7.1,b the velocities of the particle, apgrbing the plate from infinity
at the distance, are shown. The velocities are calculated by thendda (7.39)
depending on the parameter of interactrat differents,. Comparing Fig. 7.4,
with Fig 7.1,b, here of incremental velocity isdan case of same valuBs, and
the light velocity is reached in caseRyf - o. It is necessary to note, that the ve-
locities in a pointx, can be calculated also by first method, but fas ihecessary
to take advantage of more complex expression (Td32).

We have calculated the velocity of a particle dgiame plate action. Combin-
ing values/, it is possible to find the velocity during thetiao of any number of
plates. So, when two plates located at distanc&dn each other (see Fig. 6.2),
the expression for velocity of a particle will be

131



a o Fig. 7.1. The, ad-
B B duced velocities of a
ﬁo’/g/% 1 0.8 _.——1————": particle, ~ moving
0.8 g 0.8 — from infinity with
L 0.6 =" y
o 74 7 the different initial
: 7 0.657 / velocities & (are
0.4 A0 0.4 20 given on the sched-
// ules) and located at
0.2 0.2 0.2 the action of a
charged plate are the
0 results of the solu-

0 . .
0.2 0.4 0.6 0.8 B 0.2 0.4 0.6 0.8 B tion of an equation

(7.36) during the
contact of a platej- asymptotic solution (7.39) during approach ofaeat the distanocg
=0.564.

v2=c? - (cZ —vd)exgA(x+d) = A(x—d) = A(X, +d) + A o(x, —d)]. (7.40)

Here the centre of coordinates is located in threeof the capacitor, the axigs
perpendicular to the plates, and the valuis determined from expression (7.31)
or (7.32) by the substitution+ d andxy + d instead ofk andxg, accordingly.

Let's consider a particular case of movement odurdige in such a flat rec-
tangular capacitor, when the particle moves alangyas from one platex{ = -d)
with a chargey, to another X = d) with a charge ). Then with allowance for
(7.32) the expression (7.40) receives a sight

v? =cf - (cf —vd)exdA(2d) - 10)], (7.42)

whereA(2d) is determined from (7.32) whea= 2d, andA(0) - atx=0.
As the distance between the plates of the capa2ités much less than its sizes,
the expression (7.41), together with (7.32), wille bsimplified at

2d 14/ (- B?)(a2 +b?) - 0 will be written as

2.2 _(o2_,2 _ 20,u
v°=¢f (¢ DO)EX[{ —cfml(l—ﬁz)] (7.42)

whereu = 47 (2d)dl¢ - residual of potentials between the plates ofciyeacitor.
Whenu - o, v - ¢; follows from (7.42). That is, even at a very lakgdtage in
the plates of the capacitor the velocity of acakst particles will not exceed the

light speed. At small velocities, i.e. @t - o ~ from (7.42) we get the known in
physics equation
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mp? _ Mg
5 5 +quu,

It follows from (7.43), that the initial kinetic ergy E = my?y/2) of the particley,
after its passing the accelerating potentialill be increased by valugu. Taking
into account (7.43) the unit of energy of particleslectron - volt is entered in
physics. It is equal to energy of a particle witbhearge of an electron equaldp
which it gains passing the potential difference 1V. So, wheru = 1V this
energy is called 1 MeV, at= 16V = 1 GeV.

But actually, as it is seen from (7.43), at theetm@tion the charged particle
gains the energgu only at small velocity of a particle. With increasf velocity
the gained energy in the capacitor decreases. ®@agr acceleration of such a par-
ticle, as electron, its energy will not excemgt2=0.256 MeV (n, =9.10810°3*
kg, c = 310°m/sec, 1le\= 1.60210"%) at voltage in the plates - c. Therefore
assigning the energy to a particle in 1 MeV, in\L &c. is fictitious.

Let's record the expression fdrduring the action of a charged section di-
rected along the axis (see Fig. 6.3). By a passage to the limit. 0 we obtain
from expression (7.31)

(7.43)

{=z-a
2
Az_zqilQ |n(yZR\,+xﬁxﬁz+yﬁyﬁz+Z y: ) (7.44)
RIS .

For expression (7.44) all conclusions, which weddueed for expression (7.31),
are fair.

7.4 CALCULATION OF PARTICLES MOVEMENT IN ACCELERATO RS

In the majority of modern boosters the acceleratiboharged particles im-
plements the action on them of charged bodies.dBwice is created so, that the
accelerating force was directed along the veloaitg particle. During the action
of a dot object with mags, >>m, the acceleration according to expression (4.58)
and law of a Newton (2.4) will be

_ n2
W= MC , (n45
EmyX
wherex is a distance from an object up to a particle.ifiag a differential equa-
tion (7.45), we will receive the expression for ttedocity of a particle

v?=c? - (c? —vg)expzilz(% —i) (7.46)
m,Cy EX  EXy

depending on a distance from the object, if thaigdarhad the velocity, at the
initial distancex,. Theq, value, included in this expressiag/ex = V represents
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an electrical potential of a final point, aggexo =V, is a potential initial. Then the
residual of potentials of these two points candmarded

U=V-Vy=22-
EX  EXg
And the expression for velocity accept a kind

v?=ct -(c? —vg)expzq—ll’;. (7.47)
mc;

The residual of the acting object potentials entenly in this expression, which a
particle passes there. In case of not dot actingctdy the bought velocity of a
particle at a potential differendg, which it will pass, can also be defined by ex-
pressions (7.47). As the calculations show a vBlamlculated so differs a little
from that, received by the evaluation of force frtns object. Therefore, the ex-
pression (7.47) with an adequate accuracy can pkedpto a calculation of the
action on a particle of any objects.

Let's consider some singularities of expressioA?)Z.In case of attractiogy
the value idJ < 0. WhenU - o the velocity of a particle is — ¢y, i.e. any large
residual of potential®) the particle has not passed, its velocity will hetmore
than cl. The energy of a particle after an acceteras the kinetic energl = E,
=mv?2. If to define the energy of a particle as chayges product on the passed
residual of potentialy, i.e. E, = qU, this value does not correspond to a real en-
ergy of a particle. For example, in case of indidly large potential differenceéJ(

- ), the energy of a particle, according to (7.47)| mot be infinite, and only
comes nearer to valie- m¢%/2.

For an electron the value ¢/2 is equal to 0.256 MeV. As the electron in ex-
isting boosters can not gain the velocities gregdi@n c, then it can not exceed the
energym ¢f/2. As energy, appropriated to an electron, in VMEOO MeV, 1 GeV
characterizes only sum of potential difference$ 1¢, 10 V, accordingly, which
the particle has passed, hereinafter we call itliffierence from real energy, rela-
tivistic.

The second singularity of expression (7.47) is that particle, passing the
same residual of potentials, will receive a différencremental velocity, and also
the increment of energy. The value of incrementddp on the initial velocity the
particle is accelerated. The particle is acceldrattter, when its initial velocity is
equal to zero, and it is not accelerated at alewie initial velocity comes nearer
to ¢;. Thus, the relativistic energy does not corresptind real one because at
different initial velocities the particle receiveiferent increases of velocity.

We research the movement of a particle, which iscaby a magnet. If the
velocity of a particles is perpendicular to magnetic intensity , homogeneously
distributed in space, and other bodies do not force particle, the particle will
move along a circle. Really, by substituting fo(6e81) in equation (2.4), we ob-
tain an acceleration of a particle
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\Tv:ﬂ_(l(]_—ﬁz)[ﬁxﬁ], (7.48)

which shows, that it is perpendicular to a velo@bd a magnetic intensity. Let's

write acceleration (7.48) in polar coordinate systes two components: tangential

in a direction of velocity
1d@R) _

0, vR=h=const (7.49)
R dt

and a radial, perpendicular velocity,
d’R_o? _ pq(l-B%)wH
a2 R mc
In steady-state casBR/dt* = 0, and it follows from here, that a particle lwil
move along the circle with a radius

R=_ ¢ (7.51)
HAH (- B?)
We drop a minus, considering the modules of valéesthe particle movement
velocity along the circle is = R, the angular velocity of a particlemovement
round an axis, and which is separated from it atdistancer, will be

_p2
w= M . (7.52)
m,C
If to substitute of the Lorentz's force (6.79),(&4) we receive the angular rate a
particle of rotation

(7.50)

w =HH 7.93)
m,c

The angular rate, unlike calculated by Lorenz'sdaas it is seen from (7.52) de-
creases with the increase of a particle velocity mraching the velocity of propa-
gation of electromagnetic actioff (- 1) tends to zero, i.e. at any large intensity
H magnet can not bend the trajectory of a particle.

The angular rate (7.52) is shown in an implicitckiexpressing3 through
«R/c and deciding a quadratic equation, we will recthrel angular of a particle
movement moving along a circular trajectory in &wious kind:

_ -1t4/1+4w?R? I ¢ (7.5

w
2w, R | ¢

Using a sign a plus, we can see, that at smalkgadfi intensityH, and conse-
quently, &y the angular velocityw= «j. At large values of intensiti, that is at
w?R?/c? >>1, neglecting the unit in a numerator, we obtairt tthe angular
rate tends to a limitv= c,/R. In this case, the velocity of a particle is eqe
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light speed and according to (7.51) radiuses oft éelnds to infinity, i.e. the tra-
jectory of a particle will be the linear.

Disposing the description of a particle movemertieiw the electromagnetic
devices as (7.47) force on it and when magnetit si5c(7.52) or (7.54) we can
consider the processes in boosters of particles.

In the high-voltage electrostatic booster the amagion of charged particles is
made by the charged parts of installation. A seniesber of electrodes plates
with orifices or tubes are usually used, which pb& is increased from the pre-
vious to consequent. Passing a distance betwedirdhelectrodes, the particle is
accelerated under an action of a potential diffeedh between them. If the initial
velocity of a particle iy, after passing of the second electrode its velpeit-
cording to (7.47), will be

2q,U
o =\/c12 - (c? —oé)expL; : (7.55)
mc;

After passing a distance between the second ard ¢léctrode with a potential
differenceU, the particle has the velocity

2q,U
v =\/cf -(c¢f —vf)exp%. (7.56)

Substitutingy, in (7.56) of (7.55), we will receive

2qU
v =\/cf—(cf—v§)expﬁ, (7.57)

whereU = U; + U..

Thus, we can see, that only the residual of paknbetween the initial and
the final electrodes or the total voltage passea Iparticle is included in the ex-
pression for the velocity of an accelerated pagtitfithe particle passes+ 1 elec-

n
trode and the full voltage will b = ZUi , its velocity will be expressed by the
i=1
equation (7.47). Therefore even after passing ibefinumber of electrodes the
velocity of a particle will not exceed valag
In a cyclotron the particle moves along a circleatimg the other cyclical

curve forced by magnets with perpendicular to vigfomagnetic intensityH .

The pairs of electrodes are located along a citble,acceleration of a particle
happens when the potential difference acts onsudlly in cyclotrons there are
two electrodes - dee, representing two parts gliadrical box, cut on a diameter,

with small altitude. The particles rotate insideesl@nd pass slots between them.

The high-frequency voltage is brought to dees ab dh the moment of passing a
slot the particle was accelerated. At phgsat this moment the acceleration will
implement voltage = U, cosp, whereU,, is a voltage excursion.
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In such cyclotron the phase of voltage in a slategawith each revolution.
With growing velocity of a particle its angular eataiccording to (7.52), decreases,
therefore during each consequent revolution théglardelays in relation to the
previous phase of voltage. Duringturns particle will pass the total voltage

n n
U=>u=U_,> cosg, . The final velocity of a particle will be definday ex-

i=1 i=1
pression (7.47). As the phase grows, the accederatsually begin at negative
phaseg > — 772, and finishes at positivg < 772. The final velocity of a particle
can precisely be defined, carrying conducting sesfecalculations after each par-
ticle passing a slot. If we knew the initial veliycdg of input particles in the acce-
lerator and initial phase, voltage, that we may, according to (7.47), find tke-
locity v, of a particle after the first slot.

It is possible to calculate angular rate of a platty, on o, by (7.53). The
phase of voltagep, in the second slot is determined by the differeagand the
cyclical frequency of voltagev =27f. By ¢, ando; again with the help of (7.47)
we can calculate a velocity after the second Slotitinuing the further calculation
in this way, we can calculate the final velocitysoparticle. These evaluations are
convenient for conducting on the computer. Let®nthat in this process the ra-
dius of trajectory will vary, therefore for a preeicalculation of process of accel-
eration in a cyclotron it is necessary to use trecipe solution of an equation
(7.50).

The synchrocyclotron, or phasotron, differs fromcyclotron because it
changes a frequency of accelerating voltage inrdecee with a change of the
angular rate of a particle. With allowance for @).3he frequency should be
changed in the following way:

fofe  HOH g g2y (7.58)
2 2mmmyce

In existing boosters in view of a uncontrollableangewp the acceleration of a
particle happens according to the oscillation phase.

In a cyclotron and phasotron, as it is seen frofsl()7 with an acceleration of
a particle the radius of trajectory grows. The uaddf a trajectory is maintained
constant in a synchrotron and synchrophasotromonateate magnet on the whole
interval of a trajectory radius change. With thisgose it is necessary to increase
the magnetic intensity as it is seen from (7.51)h \growth of velocity of a parti-
cle by the law

H=_T¢ v (7.59)
MR, (1~ %)

whereR; - radius of the booster. But as the velocity gfaaticle grows, and the

radius of its trajectory does not vary, the anguée of a particle begins to in-

crease, and the phase of accelerating voltage aseTo avoid this in a syn-

chrophasotron unlike synchrotron changes the frecyuef accelerating voltage.
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From the listed cyclical boosters everything, exaegyclotron, works in a
pulse mode. In the linear booster the acceleratfquarticles is made along a di-
rect line. The electromagnetic high-frequency fietdate the difference of poten-
tials in the tubular electrodes (drift tubes) oitlie waveguide. The final velocity
is determined by expression (7.47), wher@epresents a total residual of poten-
tials passed by a particle.

7.5. CALCULATION OF RESULTS OF THE BUCHERER'’S
EXPERIMENT

The direct measurements of forces between the mosiarged particles
were not conducted. Apparently, for the first tilme the results of deviation of
particles forced by the charged and magnetizedelsodi Kauphman determined
in 1902 that the attitude of a charge to a massmbving electron depends on its
velocity, i.e. the interaction between moving cleat@bjects differs from Cou-
lomb's law. Hereinafter in the Theory of Relativityvas treated as increase of a
particle mass during its movement. In 1908 A.G. tigwer [86] conducted more
precise experiments showing the action on an @lediy the charged and magnet-
ized bodies, in which he confirmed the dependeridbeattitude of a charge to
an electron mass from its velocity. The experimevese executed during an elec-
tron change of velocity in a large range, includihg velocities approaching to a
light speed. It helped to check up the various tbiécal explanations. Most likely,
the obtained results were widely considered, butkmew only one publication
1919 [74].

Let's apply to professor Shaposhnikov descriptibBuxherer's experiments
[74]. The grain of radium, located in the centrethad flat circular capacitor (Fig.
7.2), emittedB - rays in all possible directions. The capacitaswplaced between

the poles of a magnet with homogeneous magnetasity H located in a plane
of the capacitor. On a cylindrical surface the plgoaphic film coaxial to capaci-
tor (see Fig. 7.2b) was settled down. Through a narrow slot of thpacé#or
passed mainly those electrons, for which an elsdtaction of the capacitor and
perpendicular to it action of a magnet were muyuampensated. " The Com-
pensated electrons "coming from the capacitor iereed only by magnet and
deviated by it from a mean plane of the capacitdg.(7.2,b). Then they reached
a photographic film pasted on an internal side @daxith the capacitor of the
cylinder and made it blackening.

138

Fig. 7.2. The scheme of Bucherer'
experiment.

a - view along an axis of the capacitor;
b - view in the diametrical section ol
the capacitor.
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film.

Inside the capacitor (see Fig. 7k,
the force acts on the electron fror
the capacitor up, and from a mac
netic system - downwards. There
fore from the radioactive source
located in centre, only those parti
cles will take off, for which the
magnetic and electrical force will + = B

be counterbalanced. The electrici _v_v_v_% 7\ 1z

force IfE on a moving particle is | 2
rather exactly described by a equi \ \ %
tion (6.90). According to expressior 2 1

(6.89) the magnetic force at= 1 is
the following

1 - source of g-rays2 - photographic /

/4

//
\

™

Fu =280~ F2)Hsing, (7.60)

where an axigz and polar anglg are determined in a Fig. 7.2. Then the condition
of compensations of forces on an electign= F, will be

qE@- 5%) = qB(L- B*)Hsing

or
Ssing = E =const. (7.61)

If in the installation any constant attituiéH is selected, ap= 772 the valueGis
the least, i.e. on a horizontal axis (see Fig. &.2he particles will go out from the
capacitor with the least velocity. With the redaoatiof the anglgp from 772 the
velocities of particles will be increased and apjgtong the anglg = arcsingE/H)
the particles with velocity close, to light speeill go out from the capacitor. Out-
side the capacitor, the particles, being only undagnetic action, and moving on

a circular helixes round the vector of magnetiemsity H , will deviate from a
mean plane of the capacitor (see Fig. B)2and fall on a photographic film. As
with growth of a particle velocity the action ondiécreases, the particles will re-
ceive the greatest deviation on a horizontal axs,wheng = 772 and least one
with the angleg = arcsin E/H). According to Shaposhnikov, all the experiments
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by Bucherer gave an approximately identical pictsihewn in a Fig. 7.3. The
main difference of the Theory of Relativity frometlexperiment is that the curve,
calculated according to the Theory of Relativity,deviation, coming nearer to

. T . angles = arcsin

p= aresin L 7=z p=r-arcsin 7 (E/gH), sh%luld go verti-
cally, as shown in Fig.

( ,, |

( / Fig. 7.3. A curve of elec-
trons deviation at differ-
ent velocities on a photo-

YZ graphic film in the

Bucherer's experiment.

Repeating a technique of calculation explained gy $haposhnikov, let's
imagine, that the electron moving from the capagiicc. A (see Fig. 7.2a) with
velocity » will go along a screw trajectory up to a contadthva photographic
film. The trajectory can be received if to bendiartgle ABC on a cylindrical sur-
face by a radiu®, of an electron movement trajectory (see Fig. B)2;Then the
hypotenuseAB will be the trajectory of an electron, and the usdof a curvature

will be defined from the equality of magnetic arahtrifugal forceslf,\,I = IER:
aB(1- % )Hsing = m?sin’$/ Ry,

whence

R, = mc  B*sing _mc*Bsing 1

" qBEing H(L- B2) qgH 1-p82° (762)

But as for the given experiment according to (7 8% ¢ = const, the radius of a
curvature (7.62) can be recorded

_ A
Ry _—1—ﬁ2 , (7.63)
where
w = A =const. (7.64)
gH

After bending a triangl&BC p. B falls in p.y of a photographic film, which will

defend orz from a median plane and be with the angke the intensityH .
By designatingAx = x, the valuez can be expressed throuBhandx if to take into
account, that the deviation of a poidtin case of curvature of a triangle too is

equal toz too. Thenz=Ry —,IR,% -x2 . After differentiating this expression at

the angleq, after transformation we will receive
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dz___z Ry, x dx
da Ry -z da Ry-zda
From expression (7.63) after derivation we have
dRy __2A8 dB _2PR; dB (7.66)
da (@-p%»%?da A da
The derivative frong is defined, differentiating (7.61):
4 __p 8 767
da tgg da
After a substitution (7.66) and (7.67), the expi@s$7.65) will be recorded as

dz _2B°7Rictgpdg  x  dx

da AR; -2) da R,,)—ZE'
Let's consider behaviour of the tangent to a caty® — 1. As it is seen from
(7.63), at f - 1 the radius R - o, therefore from the expression

z=R, -|/RZ -x? =R, - R, (L- 05x*/R,’) it follows that zR, = x? / 2. Sub-

stituting the value z in a right member (7.68), wi## consider behaviour of the
tangent to a curve with large velocities of paeticl

lim-9Z = fim (szggﬁ 49, x O] xpeghdd 7 g
A R¢—zda R¢—zda’ A da

p-1da Ry-«

As we can see, the limit of this expression isnalfvalue. Aglz/da is a tan-
gent of a curve declination, it will come neareratdorizontal line at any acute
angle, as shown in Fig. 7.3.

Shaposhnikov and Kasterin considered Bucherer'srarpnt of the basis of
theTheory of Relativity. According to Shaposhnik@4], the condition of com-
pensation in the Theory of Relativity is expresbgdhe same equation (7.61). For
a radius of a curvature he received [56] the foltmnexpression:

R, =—=0
¢ - [
J1- B2
whereCy = A = const. K.N. Shaposhnikov obtains the dependémctangent as
follows:

(7.65)

(7.68)

@7

2 2
dz_x*potgp R dp, _x dx a.71)
da A Ry —zda R;-zda
The first member in (7.71), and consequently, dzida tends to infinity aR; —
o, i.e. the curve will approach a horizontal aziat the right angle (see Fig. 7.4).

It is possible to be convinced, that the superftunwiltiplicandRyin the first ad-
dend of expression (7.71), which the tangent ofid&iion conduces to infinity, is

stipulated by relation of a radius of a curvature7Q) from 1/y1- 3% unlike
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1/(1- B?) in our expressions (7.63), (6.90) and (7.60). Thuh ratio of the

Theory of Relativity and ours give At— 1 the identical qualitative outcome - the
action of a charged body and magnet on a movinggekiaparticle decreases and
ceases absolutely in case of approach to a liglgtdsp

o= arcsin H£ o= 21 =7 -arcsin £

H Fig. 7.4.Calculated by the
Z Shaposhnikov, according

/ 0 to the Theory of Relativity,
character of deviation of

) electrons with different

velocities.

YZ However, the quan-

titative responses differ
with velocities close to the light speed, i&= 1. The relation for a radius of a

curvature (7.63) from (}F) is received from the experimental laws of an tetec

magnetism. Relation (7.70) fropq‘l— (3% is obtained in the Theory of Relativity

due to acceptance of a number of hypothesisesidimg the hypothesis of a mass
change of a particle during its movement.

In Bucherer's experiment a track of a particle wtita velocity close to the
light speed remains on a photographic film, th&dved to see a divergence be-
tween the Theory of Relativity and reality. Buchecenducted experiments in

case of two direction€ and H [86], therefore on the photograph there are upper
and lower branches of a curve. They incorporateesurstharp corners, forming
lentil. However, the connection of branches, akim 7.4, according to the The-
ory of Relativity should happen at the right anglepresenting a figure as an el-
lipse. All results of Bucherer's experiments in 89five a lens-shaped curve,
thereby rejecting the results of the Theory of Rely.

CHAPTER 8

APPROACH OF FORCES
AND RELATIVISTIC METHOD

8.1. ETHER, THEORY OF RELATIVITY
AND LORENTZ'S TRANSFORMATIONS

The knowledge of the world by the person happemedtat it among the
uncountable a mount of moving objects he alwaydtto find the one, which
rested, and all remaining ones moved relatively. lBefore appearing Copernic's
system such central system was the Earth.

142

Then it was transferred to the Sun. But when byenolagions it was deter-
mined, that the Sun, as well as remaining starsesysuch an absolute system of
the world began connected the hypothetical globadlienthe ether. The people
thought, that the light from distant stars shouddspread in the ether, and as it has
an electromagnetic origin, then the electromagnatiton should be spread in
relation to this ether. Here @s Einstein in his work "The Principle of Relativity
and its Consequences in Modern Physics" [77] sunupeak the beginning of the
XX century the representations at that time abdeat mecessity of the ether:
"When it was found, that there is a steep analagyéen the elastic oscillations
of a ponderable matter and the interference arfcadifon of light rays, they de-
cided, that light is necessary to consider as Hudlatory condition of any special
substance. As light can be spread in space, wherpdnderable substance is ab-
sent, to explain it, it was necessary to admitekistence of a singular substation
distinguished from a ponderable matter; this sulostavas named as ether. And
as the bodies distinguished by a small densityfoagxample, in gases the veloc-
ity of propagation of light is approximately equ@althe velocity in vacuum, it was
necessary to assume, that in these bodies theatiteis the main carrier of light
phenomena. At last, the hypothesis, according tlwthe ether is inside liquid
and rigid bodies, in turn became necessary to gtaled the propagation of light
inside these bodies, for with the help of only #taproperties of a ponderable
substance it was impossible to explain the vastoisi of light rays propagation”.

It is necessary to underline the method of knowdedghich seemed true at
that time. All happening should have explanatioiithvthis purpose it is necessary
to put forward hypothesises and on their basisxain the world around. Let's
follow the explanation of the world, based on tgpdthesis of the ether.

As the Earth moves in the prospective ether, tbtlat a surface of the
Earth, being spread with certain velocity in reatto the ether, should have other
velocity relatively the earth surface in a direntiaf the Earth motion, an in a per-
pendicular direction. By the experimentators healdgd\. Michelson many ex-
periments were made, but the calculated residuakldfcity was not confirmed
experimentally.

Then there were attempts to explain theoreticélst fact, that the light has
identical velocity as in relation to ether, and@ation to the Earth, which moves
in ether. G.A. Lorentz and other independent resecktated a hypothesis, that in
case of movement of the Earth in the ether, ifgsaetive decreasing it in the direc-
tion of movement happens, so it is impossible tasuee a change of light speed
in relation to the Earth. As for electromagnetitiat there were equations, de-
scribing its behaviour during movement, these @quoatof electrodynamics are
used. With their help the put forward hypothesis jusstified by the mathematical
transformations of coordinates which reduced a field of a moving system of
charges to a field of motionless charges [53].

Let's underline, that these transformations argmfa condition: the field of
moving charges is the same, as the resting on&sb#sed on fancying a field as
some essence, which must not depend on movemeistc@idition is mistaken,
as the moving charges create current, which ac& wagnet, but the motionless
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charges do not act on a magnet. That is the fieldaving charges should differ
from a field of motionless ones. But as the hypsithef abbreviation of the values

is adopted, then from its positions the transforomak = x ,/1- 3° is considered

as the abbreviation of the values in a moving systé charges in a direction of

movement. It was supposed, that we don't find affgrdnces in propagation of

light in a moving or resting medium in relationttee ether. Later G.A. Lorentz

refuses the given hypothesis, as in introductioallohew hypothesises "there can
be a necessity every time, when we know the nets'fde notices in the work

"Electromagnetic phenomena in a system, moving waiti velocity, that is less

than the light speed" [33]. He writes here too:p@sition of things would be satis-
factory, if it was possible by of certain main asgtions to show, that many elec-
tromagnetic phenomena, do not depend on the moueofiensystem". In these

words said in 1904, the physicists of those yehosvstheir ambitions of physics

and general direction is expressed, namely: thetredal field of a moving system

will be expressed by the same rates, as the aeakfiéld of a motionless system.
The physicists will not search any more reasons&a@ipg simultaneous existence
of firm ether with the same velocity of light inand in a reference system, which
moves with any velocity relatively to the ether.

Let's give of Einstein’'s words from his work [77]:By such way have
reached understanding of these fields in emptinesghe special statuses of an
ether, which are not demanding for deeper analysisti Einstein, not resolving
this inconsistent problem of existence of identgaed of light on air and in sys-
tem moving in it, and only accepting it for onetbé principles, creates the The-
ory of Relativity. Originally given principle in " Electrodynamics of Moving
Bodies" [33] was formulated so: "Each ray of lightves in "resting" coordinate
system with certain velocity irrespective of, whether this ray of light is etmit
by a resting or a moving body ". Afterwards thisitiaus formulation will be re-
placed by more direct: "the velocity of propagatadninteraction is identical in all
inertial systems of a reference" [28]. Einstein executes a principle of relativity
by G.A. Lorentz's transformations G.A. the Lorerad he notes in the same way
the equations of electrodynamics for a moving asstimg system. For this, the
transformation of time is introduced additionallysense of Einstein's operations
is the following: if in vacuum there is any elec#i system of actions and is in the
given coordinate system vy, zit is described by Maxwell's equations (3.22) and

(3.24) for vectorsE and H , then relatively moving with velocity of coordi-
nate systent', y', z'the same system of electrical actions is descrilyetthe same

Maxwell's equations, but for the other vect@sand H '. The transformation&

andH in E'andH ', and alsc, y, z, in X', ', Z', t'follow from the given con-
dition. This approach also makes the second pimcpthe Theory of Relativity:
"The Laws, by which the condition of physical systevary, do not depend on
that, to which two coordinate systems, locatedtiredly one another in a uniform
transitional movement, these changes of a condit@ong” [33].
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So, the following link of hypothesises and conausi following from them,
is traced.

1. A hypothesis about the ether as the media,velgatwhich all movements
take place.

2. The experiments (Michelson etc.) do not confarailability of such
ether.

3. The conclusion is received: the movement redftiether cannot be de-
fined, as the bodies in a direction of movementradeiced.

4. The corollaries follow from it. The laws of megtics do not depend on
movement. The fields (with which the action of exlare expressed) nor depend
on movement. The forces of action of moving bodies the same, as the mo-
tionless ones.

5. The transformations of space and time followrfra condition of invari-
ance of fields during movement.

6. The experiments (by Kaufman, Bucherer) testift the action on a mov-
ing particle decreases with increase of its vejocit

7. The explanation is put forward: the mass of digla grows with the in-
crease of its velocity.

We have enumerated only a part of the hypothesigapositions and conclu-
sions following from them, on which the Theory dfI&ivity was developed.

Further, the obtained transformation of coordinée®ceived for real com-
munications of the ambient world. The light spegddientified with the velocity
of propagation of any action, and as Lorentz'ssfiammations do not exist at the
velocities that are, greater than the light spéed,received for limiting velocity.
The coordinates and time are considered as an éndept object — four-
dimensional space-time.

8.2 ESSENCE OF TRANSFORMATIONS

Many works are devoted to the analysis of Lorentz&nsformations
[41.43,79,87,92,103,127] and the principle of ieigt [71, 93]. Instead one hy-
pothesis the others ones are often introduced Hdiscard all hypothesises, on
which the Theory of Relativity is based, the esseotits method of describing
the actions is that the action of moving bodiedasermined through a action of
motionless bodies, which parameters vary accorgingprentz's transformations.
However action of moving bodies differs from théi@t of motionless ones. They
also are described differently. Therefore, equatihgertainly unequal equations
is a formal acceptance, which can be applied, limgd transformations have not a
physical sense, i.e. the parameters of appearamcksbjects are not connected by
these rates.

Let's consider such formal equating of rates desugi the electrical actions
of moving and motionless charged bodies. The chafdaodies (Fig. 8.1a) is
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described density of charge(x, y, 3, and they move with the velocityalong an
axisx,. During movement we write all the variables witidéxes ¢": a density of
chargeso (x, y, 2 in a coordinate systemy, y,, z, (see Fig. 8.1h). Let's consider

the force of action of charged bodies on a unitrghawhich rests in this system,

i.e. the electrical intensityE . All further will not vary, if the unit charge mes

with velocity (v) relatively a system of charges. As it was foundthe experi-
ment, the electrical action depends only on aix@atelocity of interacting ob-
jects, therefore these cases are equivalent.

P 6y =0 e Vi
L Oy 5, Dg w5 Bg
slo  6[a, 56
!
) x P20 X, e T X, X,
| 0
o° O O O 'O O

Fig. 8.1.The schemes of action of motionless charged bdd)eend moving§) and €) on
a motionless body with a unit chargg € 1).

The force of action of a moving system of chargediés with a densitp, is
determined by d'Alember's equation (4.6), whick jprojection on the axis, and
Yy, will be written so:

/°E,,  J%E,  J0°E, 1 J°E, 4m J A 2
+ + T =— Py t——F——
x> dy?  0dz2 & o € Ox, ec? ot,
2 2 2 2
4 El)y + a Eny " 4 El)y _id Eny - 4T 0

2 oy o2 & a2 ey’

Py (81)

(8.2)

As the projection of force to the axisis similar to a projection to the axrg the
last is not mentioned.

As the system of charges is constant, its acticem imoment, and at a point
Xt =X, +ot,, Y, Z, (see Fig. 8.1¢) will be equal to the action in a moment 0 at
a point with coordinates,, y,, z,, wheret, is any interval of time. The full deriva-
tives on time from variable set of equations (8.@.2) will be equal to zero:

4 _99%, 9 _, (8.3)
dt, Jx, dt, ot

Let's mark, that G.A. Lorentz used expression (88)ng deducing the trans-
formation of coordinates and time [26,32], calldtbravards by his name. With
allowance for (8.3) the partial derivatives

J J

v

(8.4)

-2,
ot, ox,
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2 2
2 =22 (8.5)
ot ax;
Then the action of a moving system of charges (&8b) (8.2) after replace-
ment of derivatives on time, according to (8.4) é\&), will be described so:

A°E,, OJ%E,  J°E, 4m 3
+ + =—
ox?  dy? dz? € 9%,

0 v

1-B%) p, -5, (8.6)

/’E,, J°E, OJ°E
(1—ﬁ2) o LA vy :4_77 g 0,. (87)
ox* dy? dz? £ 9y,

v

The expressions (8.6) and (8.7) are certain aira,pghich at any moment of time
uniformly withdraws from the centre of moving syste of charges, but does not
participate in a movement of charges.

The force of action created by the same chargedebots determined by
Laplace's equation (3.15), which has a sight

0°E, , 0°E,  O°E, _4ndp
ox?  dy? 972 € ox’

(8.8)

2 2 2
dEy+d Ey+6? Ey=4_n'dp.
ox?>  dy* 9z> € dy

(8.9)

The set of equations (8.6), (8.7) and (8.8), (8&3cribe the forces of action

of the same charged systemon a unit charge located at the same distance. De-

spite of identical parameters of action, the equti(8.6), (8.7) differ from equa-
tions (8.8), (8.9). The difference is stipulatedthg fact that the forces of action
vary during movement. If we wish to reduce the dpsion of the action of a
moving system to the description of action of aiordéss system, we should re-
place the values, which are included in (8.6) &hd)( through values, which are
included in (8.8) and (8.9). So, comparing (8.6)l #8.8), we can see, that two
replacements are enough:

x, =x1-B2,  p,=pl1-pB2, (8.10)
and comparing (8.7) and (8.9), we discover
E,y =E,/{1- /. (8.11)
Similarly, we receive for a projection to the axis
E,=E,/{1- 2. (8.12)
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Thus, by the change of variables (8.10) - (8.12)cam reduce d'Alembert's
equation of the (4.6) to the equation (3.15), itespf the fact that the equations

determine different processes. The capability chsueplacement does not mean,

that these processes are identical. Therefordraheformations of values (8.10) -
(8.12) do not reflect a real character of theirngea

It is possible to show, that the equation (4.6)eiduced to (3.15) and by the
other system of transformations, namely

E, = E,y1- 52, X, = x/1- 8% . (8.13)
The first system of transformations (8.10) - (8.le&ves charge constant:
dxy/1- S-dydz
IJ' pl)dxl}dYI)dZU II p B y ql} N

1- /32
Other system of transformations (8.13) will alsmsform the charge:

4 :J'J' j p,dxudy,dz, = y1- £2q.

By the transformations and proceeding from theiissewe can receive the so-
lution for action from moving charges from the dmln for action of motionless
charged bodies of a system in such order:

1. There are components of electrical intensitynftbe given motionless sys-

tem of charges at a poirt y, z(the beginning of coordinates - in the centre of a

system) as
Ex (X! y! 3’ Ey (X! y! 3: EZ (Xv y! 3

2. Instead of coordinateswe write everywheré x,; —ot, )/ /1~ B° , whereut,
determines the centre of a moving system of chamgedx,, - coordinates of a
point in a coordinate syster), v, , Z, at the moment, (hereinafter we lower in-
dext). The axisx is directed on the velocity of charges system.nTite compo-
nents of the electrical intensity will be:

—ot, X, —ot X, —ot
X, TV E 0 vz)yz E v ~ 0L z

X W!yu! v | y W! vr4o | z 1_—182!)/1)! v

Applying the second system of transformationssitnecessary to multiply the

value of a charge by/ y1- 32 , i.e. to replace on q,/y{1-8% .

3. To record components of the electrical intenBityn a moving system of
charges for the first system of transformationadiog to (8.11), (8.12), as:

E
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-t
EUX = EX M 'yl) ‘ZI) 1 (8'14)
V1- /2
1 —ot
E, = E,| =2y, 2, |, (8.15)
i-g2 \y1-p2
1 X, —ot
E. = (E,| —=—==.Y, %, |, (8.16)
V1- B2 J1- B2
and for the second system of transformations, aoegito (8.13), so:
9
Ex = 1_182EE = Yo% | (817)
x [J = ; J

vt
Yo 2 | (8.18)
O e
E,; = % Yoz | 8.19
[W = J o

It is uneasy to be convinced, that using this metlitas possible from expres-
sion for electrical intensity of a dot charge

E - xq E - yq _ 2q
€(X2 + y2 + Z2)3/2 ! y E(Xz + y2 +22)3/2 ! €(X2 + y2 + 22)

3/2

to receive in the projections on the axis of cooatis the expression for intensity
of a moving point charge with velocity

(1_ﬁ2 )( X, _Utz) )qu
Ex = , (8.20)
ox, -ot, 2 +(1- 2)(y,2 4220
_ (1- 8%)y,49,
E, = , (8.21)
R T i
2
E, = (1= 4" )ag, . (8.22)

0, —ot, 2+ (1= (32 + 220
The expressions (8.20) - (8.22) represent the pliojes of electrical intensity
(4.54), created by a moving point charge.
So, both obtained systems of transformations retheexpression for a mo-
tionless system of charges to the expression feratttion of the same moving
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charged bodies. And the actions of both moving &dind motionless ones differ,
and the expressions give different results at #mesinput data. For example, for
the first system of transformations (8.14) - (8.t6mmunications between the
forces are following: if the motionless system bfiges acts on a unit resting
charge, separated from its centre at distarces, y = b, z = by the force with

projectionsE, = A, E, = B, E, = C, during the movement it, will be acted by the

force E,, = A E,, =B/1- 3% E, =C/1- 3% on a unit charge, separated
from the centre at the on other distances=a./1- 5%, y, =b,z, =c.

The similar sense is expressed also by the tramstions of the second system
(8.17), (8.18).

8.3. DESCRIPTION OF INTERACTION OF MOVING
NON-STATIONARY SYSTEMS OF BODIES
WITH HELP OF THE TRANSFORMATIONS

The previous transformations were obtained for aiontess system of
charges. If the electrical system varies in a dugse, a ratio between the coordi-
nates of points, in which the force of action afmationless system and moving
are in certain conformity, will depend on an instgrin which this conformity is
considered. Therefore, the timevill be determined in coordinates along move-
mentx,, in which the action of a moving system, and atsmmentt,, i.e.t =t (t,,

X,) is considered.

So, there is a variable electromagnetic system avilensity of an electricity

pand density of currentgl . Its action on a motionless unit charge is deteeahi

by vector E , and on a moving charge, current or magnet with parameters —

vector H , which are deduced from Maxwell's equations (B.22.28), (3.19),
(3.14). Let's copy these equations

rotH =4—ﬂpu +£E—ld—E, (8.23)
C c ot
rotE = —EJ—H, 8)2
c ot
divE = ﬂp, (8.25)
&
divH = 0. (8.26)

In a chapter 3 and 4 by eliminatitg from a set of equations (8.23), (8.24)
we received a d'Alembert's equation (3.26) foragbgon of moving charges on a
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motionless charge, and by eliminatifig - for the action of a moving magnet on
motionless objects.

Now we will consider a method of describing the@tiof a moving electro-
magnetic system by the transformations of varialles it move with velocity
along the axix relatively resting charged body and magnet, hauinigs of elec-
trical and magnetic charges. The action of an elewgnetic system on these
bodies will be determined by the same set of eqoat{8.23) - (8.26), but with
other current density:

J = pl(uy =) +u,, ] +u,K]. (8.27)

vy

Let's copy this set of equations, by replacingdr28.) a current densit)oa on
(8.27):

oH
EdEyX +4_]T,0n (ul}X +D) =ﬂ_—vy, (8.23a)
C C?t” C dyy dzn
JE

£y ATy = PP Py (8.23b)

C dtu Cc ‘?Zn dxl)

OH

£0Bp AT,y =00y O (8.23¢)

C C?tl) Cc C?X” dyn
#OHy _ OB, 9By (8.24a)

C dt” dyi) ‘?zn ’
H
uoMy _ OB, 9B, (8.24b)
C ‘?tn dzp ‘?Xn
HOH, _ &y JE, (8.24c)
C dt” ‘?XU dyn ’
E
OB, , 98y , JE, AT, (8.25a)
ax, Jdy, Jz, c
H

OH,  Hy  dH, -0 (8.26a)

IX ay, Jz

0 0

As these equations describe the action of movirty welocity» of the electro-
magnetic bodies, all the values are recorded witthdexw. This set of equations
differs from a set of equations (8.23), (8.24)2%, (8.26), which describes the
action of a motionless electromagnetic system,hayfact that the addend with
velocity v enters in equation (8.23a). Let's search for foamstions of variables,
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which would result a set of equations during thevement (with an index) in
equations for the case of rest. As the communicatietween explanatory vari-
ables is known:

 ~ U Y=Y, 2=2, u t=t(t, x,,0), (8.28)
V1- B2

it is possible to record derivatives:
9 o, L 9. 9 _9J. 9 _9.
ax, OJx, ot 1- 2 ox ady, Jy

X =

After their substitution in equations (8.23a), @, (8.25a), (8.26a) the system
will be copied so:

JH
EOUOBy £ v OBy AT, spy=Huz TNy 550
cot, ot cfi_pgz Ix ¢ dy oz
HOtOH, pu v IH, __JE, IE, (8.24'3)
cat, ot ¢ -2 9% dy Jz’
JE
ot dEnx " 1 dEz)X + WY o+ dE”Z :4—”-’01), (825Ia)
ax, ot ,1—,32 X ay Jz £
JtdH, , 1 JH, IJH, JH, 0. (8.26'a)

ax, ot /1_,32 X ay oz

The remaining equations are noted similarly. Furtlige equations (8.23a),
(8.24a), (8.25a) and (8.26a) will be transformethwhe use of relation between
variables, which follow from other equations. Thilidion of expressions (8.23'a)
with (8.25'a), multiplied byélc, gives

ot ot X vYoX — J .
EE vﬁxujﬂEv +4IT/0u __[ Enyj dz[ oyt Enz) (8.23"a)

at, ot c ay
The addition (8.25'a) with (8.23'a), multiplied &Yc¢), gives

ﬂEux(igﬂ_uﬁjﬁEux =82,
C

ot |2 &, Jx, ax /1—,[:’2
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J ) air ou,, + 02
— + +—H = 1-—X . 8.25"a
[E“y ce ”Z] o”'t[E”Z ce Uy] £ pu[ c? J ( )

The addition (8.24'a) with (8.26'a), multiplied fy/c, gives

LS V—— o dt dH d Eny_%Hz)z _i Enz+%Hny :
c X, c?t ot 9z c ay c

(8.24"a)
The addition (8.26'a) with (8.24'a) multiplied by/c, gives
Qdt |, ot E(;HUX 1-B? OHy
02 dx,) dt \/1 g 9%
ﬂ(H Ve, ]i(H Ej 0. (B26%)
oy cu 0z cu

Here S, = v/c. As to reduce these equations to correspondingtems for a mo-
tionless system in case of angndy is inconvenient, we reduce them at first for
=1,u=1. ThenG=vlc=p..

Sequentially comparing (8.23"a), (8.25"a), (8.24'@)26"a) with equations
(8.23), (8.25), (8.24) and (8.26), written for @mponding projections, we will
come to a conclusion, that the equations will lmigtal, if the following equali-
ties are executed:

OOt hopE 2t ot g (8.29)
at, Ox, c? dt, Ix,

Allowing equations (8.29) relatively unknown detivas, we obtain:
ot _ 1 ot _ 0

—= ; =- . 8.30
The integrating equations (8.30), we will recordadingly
t= t=-— 2% __icq,), (8.31)

t,
—,—1 Z +C(x,); e

whereC(x, ) is a constant of integration &y, andC (t,,) - onx,. Equalities (8.31)
are possible, if to exact constant the relatibom t, andx, will be the following:

—_ tl} _(D/CZ )XU

V1-5.°

(8.32)
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The expression (8.32) determines the transformatfaime, which is neces-
sary to describe the actions of a motionless systEbodies to transform to the
description of action moving one. To find transfations for remaining variables,
we will substitute the values of derivatives (8.8®equations (8.23"a), (8.25"a),
(8.24"a) and (8.26"a) and is comparable with cquoesling equations (8.23),
(8.25), (8.24) and (8.26). We define two systemsarisformation of variables.

The first system of transformations
XU _Dtn . t = tI) _(D/CZ)XU .

= ; ; (8.33)
V1-5.7° V1-B.2
1- U,y +p?
U= p=p, —C22 : (8.34)
1- U,y ;—v [1_130
C
2
uyyV1-8.° B uuzwll—ﬂoz _
uy = > U= (8.35)
ou,, to ouU,, to
1- 5 1- >
C C
Ex=Ex, Hx=Hx (8.36)
v v
Eny _EDHUZ Hny +E[E1)Z
E,L=———; H, =————; (8.37)
y ’ y ’
V1-8.72 Ji-B.7
v v
Ez)z +EDHny Hz)z _EEEny
E,=—+~~——; H,=—r———. (8.38)

V1-5.7 V1-8°
The second system of transformations.
It actuates the transformations of the first systentoordinatex and timet

(8.33) and the transformation for components obeiies. A density of a charge
and the components of intensity will be transforrasdollows:

2
p= p[l“—z} : (8.39)
C

Ex = 1—,802va; Hy = l_ﬁozHux; (8.40)
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— D - p— D .
By =Ey~CMHyi Hy=Hy +o[Ey; (8.41)
D D
E,=E,+-[H,; H,=H,-~[E,. (8.42)
C C

By these systems of transformations it would alsopbssible to transform
electrodynamics the equations &and 4, distinct from the unit, if the units of
measurement! andE were not selected for vacuumat g = 1, but for media
with £ and y distinct from the units. Then the ratio betweenessttromagnetic
system of units and system CGSE would be determinetl by ¢, but

¢, =c/Jeu; c; would be included in electrodynamics equationsl antrans-

formationsf, would replaceg.

Let's bring some totals.

1. If there is a system of charged bodies with @sidg function of chargep
(x, ¥, 2 and the velocity of movemeni(x, vy, 32, it actionE on a motionless unit
charge and actiohl on a motionless unit magnet are described by ldetredy-
namics equations (8.23), (8.24), (8.25) and (8.&élich are made by measure-
ment of forces (Coulomb's law, Biot-Savart-Lapladaiv, Faraday's law of induc-
tion).

2. If this system of bodies moves with the velodityrelatively an object, the
velocity of moving charges becomes equalifox,y,x) =1 ( x,y,z)+s and its act

on the same object is described by the same elyttamics equations, in which
U is replaced by, (X, y, 2.

3. The action of a moving system of electromagnatidies can be described
by a set of equations (8.23), (8.24), (8.25) andqB by replacing their variables
according to transformations (8.33) - (8.38).

4. When we know the action created by a motiontgssem of bodies, it is
possible to calculate the action from a movingesysbodies by transformations.

5. The transformation of parameters, for exampistadces, time, velocity
etc. shows, how they should be changed, to desthibeaction of a moving
charged system by the same equations, as the afteomotionless one.

8.4. ABOUT TRANSFORMATION OF A WAVE EQUATION

For a motionless system of charges the transitiom fd'Alembert's equa-
tions (8.1) and (8.2), of moving charges, descghilme action, to Laplace's equa-
tions (8.8) and (8.9), describing the action of iodess charged bodies was real-
ized. For a non-stationary electrical system suahsition will already be between
d'Alembert's equations distinguished by densitfesuorents.
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In these two cases the intensiy described the forces stipulated by bodies,

which charge is determined by a density of an aisdton. Let's consider what
the intensity is determined by, if the densitiesre not obviously included in
equations (8.1) and (8.2). D'Alembert's equatiotheuit a right member is named
as a wave equation. If the right member is equaetm, according to (4.6), the
density of a chargpis determined by the following equations:

9p U 9P _q (8)43
ox ¢ ot

u
Q+_VQ:0, (8)44
dy ¢t ot
9p U2 0P _ (8)45
oz ¢? ot

whereu,, W, u, are the components of charges movement velocifies.equation
(8.43) is possible at any values of explanatoryaides, if

ap . U dp
=A: xZP__p 8.46
o A 2 a A (8.46)

where A, = A, (X, ¥, z, ). Let's consider a particular cagg = const. Then the
equations (8.46) are integrated and can be writteordingly
2
p=AX+B,; p=-A- Lt+C,, (8.47)
u

X

where constants of integratidt do not depend or, andC, do not depend oh

Two solutions (8.47) can be written as one equation
2

p=A(x-L)+D,, (8.48)

X
hereD, is a constant of integration, which do not depend andy. The similar

solutions are obtained for equations (8.44) angb)Baccordingly:
2

p=Ay(y—S—1t)+ D, , (8.49)
y

,0=Az(z—(ljl—2t)+DZ. (8.50)

z

It is easy to be convinced, that the solutions§B-48.50) wherA, = ku,, A, = ku,
andA, = ku, are noted as one expression
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=k(fi-cft)+ o, (8.51)
whereg, = const.
If the electrical system is characterized by a deraf a charge (8.51), that the
force of its action on a unit charge it is desailby d'Alembert's equation without
a right member:

2 2e 2F 2F
oL, 0EIE_L19E, (8.52)
X ay Jz cl ot

If this electrical system moves relatively a urtitaoge with velocityp along the
axisx, or it moves with velocity () relatively the electrical system, its action on a
charge will be the other. We can find it by tramsfations (8.33). Let's copy them,
supplementing relations for axgandz

j— XU _DtV t —_ tU _(D/C_I_Z)XI)

e U e S Y,

The transformations (8.53) differ from Lorentzartsformations (8.33) by the
fact that they are recorded for the velocity ofi@ttpropagation in mediey, in-
stead of the light speed in vacuumLet's express variables with an index "
through unindexed variables:

=27

(8.53)

(2

_ x+ot t_t+(v/cf)x v =y 7=z
-2 Ji-p2

Let's pass to the indexed variables in a wave @qu#8.52). According to
(8.53),x = x(x,, t,), andt =t(x,, t,), we can pass from the derivation on a composite
function to the derivation on argumentS'

9 _ 9 9%, 0 I O #% 9 N (gs)
ax oJx, Ix dt ox' ot dx Jt  odt, ot

Differentiating expressions (8.54) substitutingrthm (8.55), we obtain the rates
between derivatives:

i: 1 (L+LL\J’ i: 1 (vi+i] (8.56)

ax /1_,32 ox, ctaot, ) ot h-p2\ 9% dt,

Repeatedly differentiating (8.56), we discover thges between the second de-
rivatives:

(8.54)

2 2 2 2 2
9% _ 1 [d v 92 24 J (©.57)

+ +
2 1-p2 Ix? 2 oLdx, cf o2
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2 2 2 2
A R Ay SR ey (8.58)
o2 1-p% oax? ¢ dudx, a2
2 2 2 2
2 _ 92 92 g (8.59)

ﬂyz ) ﬂynz ' dzz ) ﬂznz '

After substitution the second derivatives in theiagpn (8.52) it will be trans-
formed in the same wave equation:

2= 2 2 2c
9%, ,0%E, 9%, 10% _,

. 8.60
ax?  dy? 9z° < ot? (8.60)

The ratio betweerE and E, can be anyone linear, independent from the vari-

ables of derivation. The actiog, of a charged system moving with velocity

according to (8.60), the density of which chargmithat specific case determined
by expression (8.51), will take place at poixtsy,, z, and in a moment, displaced
in comparison with action of motionless system agity to expression (8.54).

The wave equation (8.52) as the linear differerggghation can have the so-
lution [24] with dividing variables

E=Ey(x Yy, 2e" . (8.61)

After its substitution in (8.52) we obtain
2
AE, (X,Y,2) +w—2 Eo (xy,2)=0.
G

This is Helmholtz's equation, which, depending onrmary conditions can have
the different solutions. In that specific caseaih diave the solution

Eo(x,y,2) = Ege ", (8.62)

G

where EO = const;k = —f is a wave vectorfi = &T+ﬁT+I/IZ is a normal to

c
planes, which cosine directions are equal to theesax, vy, z

& = cosfR); B =cosqy); j = cos(z).
With allowance for (8.61) and (8.62) the soluti@ig wave equation will be
written as

E(x, Y, zt) = E, cosk(x t - (ax+ By + J7) I c))]. (8.63)

The substitution (8.63) in (8.52) gives a ratiothoe direction cosines
a’+p2+p? =1. (8)64

From (8.63) it is seen, that when
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+t—(Gx+ By + yz)/c, = const (8.65)
The values of intensit§ are identical on a plane at any momtgnt
Gx+ By + jz = constx city (8.66)

If the plane is perpendicular to the axjs.e. ata =1 and ,@’ =y =0, at any mo-
ment its coordinateswill be

X=Xy xCt. (8)67

In case of a sign "+" the plane of a constant tdrigityE moves in a direction of
the axisx (a direct wave) with velocitg;. In case of sign "-" the plane moves in
the opposite direction (a backward wave). Such ngppiane is called a flat wave,
and expression (8.63) is the equation of a flatevav

As the period of a cosine is equal tg & follows from (8.63), that simultane-

ously the actionE will be identical on the planes, separated fromheather at
distances

MAX=A=2mc | w, (8.68)
whereA - wavelength.
At a fixed point according to (8.63) intensity

E = E,cosu(+t — x/c)) (8.69)

varies in time in the limits & ) < E < E, with a periodl’ = 277 Thus, at the ini-
tial moment { = 0) value<sE = E, cospo, Whereg, = — wx/c, is called as an initial
phase of a wave. As is seen, the phase of a wawng #he axix varies.

It is necessary to note, that though equation j8$8alled the equation of a
wave and say, that the waves are spread, it dde®mllmw from it. We can see,
that, at the moment= 0 at all points of space there is an actibnBut this action
is varied by the harmonic law and is had differphisesg, which, as follows
from (8.69), depend on coordinatesin that case the parametgrrepresents the
velocity of propagation of a phase. Therefore aaevesvnot the motion wave of
any substance or substation, similar to waves énviater. The electromagnetic
wave is a variable action at every point, which samfrom a considered body.
The other charged or magnetized body will test aleison, which is located at this
point.

The flat wave (8.63) is one of the possible sohgimf a wave equation
(8.52). The singularities and properties of wawecpss are well seen on its exam-
ple. Other solutions of a wave equation are possildo. They are easily received,
expressing (8.52) in cylindrical and spatial paaordinates [24]. For example, in
the spatial polar coordinates the equation receiva@ght
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(8.70)

B or

J’E_ , 1 0 ( ,0E
i ——|r .
ot? r? dr

At replacementE = A/ r it will be transformed in to one-dimensional alahg
spatial coordinates

d’A _ , %A
—=C , (8.71)
2 " gr2
which solution
A= Aco{w(t + L } (8.72)
G

where A, is a constant

Here vectorsE are alsoA expressed in the spatial polar coordinates. With
allowance for (8.72) the solution as spherical vgageobtained:

E = Ao co{w(t + L)}, Es = %co{w(t tL)}. Eo = a cos{w(t iL)} :
G r G G

r r

(8.73)
So, in unlike the flat waves the intensity decreasgith increase of a distance
r from centre of coordinates. The wavelengdtin this case will be the least dis-
tance between points, in which the intensity ianridentical phase.

8.5. ABERRATION AND DOPPLER’'S EFFECT

We have considered the possible solutions of a weaumtion. The electro-
magnetic waves are created by different ways, kample, at fast change of a
charge on the plates of the capacitor. The platebeo capacitor are connected
with the antenna and earth surface and, thus, genexdio waves. The radiator of
the smaller value will radiate more short wavese €hectromagnetic waves with a
wavelengthl = 0,3 - 0,8 microns are light and are created esdhult of a charge
change within the limits of the atom sizes. Tharfaf these waves differs from
the flat ones (8.63) and the spherical ones (8.[fBparticular case the precise
expression for waves can be obtained as the resdlAlembert's equation solu-
tion (4.6), at a task of the law of changepier the velocity of charges motion is
i (t), the initial values of intensity isE (x,y,2 and its velocity of change is
JEIdt = f(xy,z).

Created by a variable electrical systgm,y,z,} the actionE , being spread
in all space with identical speeg, at large distanceas from an electrical system

will have the forward front as a spherical surfatieerefore, solutions (8.73) for a
spherical wave can be used here. At small distafioesrs the spherical surface
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practically does not differ from a plane, therefattge solution (8.63) for a flat
wave in that case can be used.

We considered above the solution of a wave equébiothe action of a mo-
tionless electrical system(x,y,z,}. Let's discover its action on the receiver, mov-
ing relatively it, in a direction of an axis witlpeedo. Let's consider this act on
the example of the solution for flat waves (8.68)le method of transformations.
Substituting replacements (8.53) in (8.63) andngptlectrical intensity with an

index "v", we obtain the following expression:

- o J1HEB | X @A)y B+ 2 1~

EI) = EOD CO - v ~
-2 o (+ap)
(8.74)
Let's apply the symbols:
w, = 1+ O’IB , XB)
1- 52
a,=2*8 (8.76)
1+ap
B B
an - 1+€rﬂ ﬂ’ 18)
[i_ 52
=P ®

1+ap 4

It is uneasy to be convinced, thaf + 32 +j2 =1, i.e. a,.B,.y, represent the

direction cosines of normal to a plane. Then thaa&qgn for a flat wave (8.74),
which expresses the action of a source on theveganoving relatively it, will be
written as

E, (%Y, 2,.t,) = Eo, COSW, [£t, = (@,%, + B,Y, +},2,)/c],  (8.79)

where the speed is positive at the approach of the receiver ardstburce. The
receiver will also perceive the action, as a flavey but other frequencs, the

angles of declination of a wave plade,z3,.7;, will differ. The expression (8.75)
describes a known Doppler's effect, and expres@or6) - (8.78) describe the
appearance of aberration. Value of actig, as follows from transformations

(8.14) - (8.16) or (8.17) - (8.19), with allowanf transformations of a charge
will vary as follows:

E,=—2_, E, =—%_, (8.80)
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i.e. it will amplify across motion of the receiver.

The attempts of experimental check of Doppler's@f{8.75) are known in
the literature [44]. However, this problem has beaanlear until now in the theo-
retical plan: there are about ten different forrsulsome of them give mutually
opposite results.

On the example of rates for a flat wave we will gider the action of a mov-
ing source of spherical waves on the motionlessivec (Fig. 8.2). As it has al-
ready been noted, that at large distance from ecedtiis possible to take an ad-
vantage of the results for a flat wave. With théoeity of a source directed on the

receiver (see Fig. 8.2, a},=1;3 = =0 according to (8.75) - (8.78) we have
w, =P 46 =14 =y, =0. (8.81)

v '1_ﬁ2

As we can see, the direction of a source observataes not vary, only the fre-
quency of perceived waves is increased. At thecampr it tends at speeglto the
infinity. In case of removing a source from theaiger & = -1 the frequency also

decreases:
w, == B+ pw, (8)82

and with the approach to spegdt tends to zero.
At the speed of a source, perpendicular to thectiine on the receiver (see

Fig. 8.2,b) 4 = =0, 3 =1 also according to (8.75) - (8.76) we have

w, = wl\1- % B, =\1- B°3 . (8.83)
Here, the cyclical frequency of radiation is inaea and with approach ofto ¢,
tends to infinity. It is called as the transvei@appler's effect.

Y a

S S
—% Zx
v X ij \Sv x

Fig. 8.2.Action of a moving source of radiati®on the motionless receivBr
a - Motion on the receiveb is the motion perpendicular to the receiver;
¢ - Motion at the angle to the receiver.

As ,ZS’U decreases with the increase of speed, the anglectihation of the normal
fi, to the axigy is increased, i.e. the line-of-sight on a moviogrse deviates from
a vertical.
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In the inclined case of motion we will express flaameters of radiation of
a moving source through the anglebetween a line-of-sight on the receiver and

the speed of a source (see Fig. 8)2,As, a = cosg, ,5’ =sing and y=0, ac-
cording to (8.75) - (8.78) we record
1+ fcosp (8.84)

J1-p2

B+ cosp (8.85)

¢, =arccosr, =arccos———.

1+ [ cosp

In Fig. 8.2¢ we show the angles of observatignof a moving source and normal
n, to the observable surfaces of radiation at twatjpos of the receiveR andR".
With the approach to c; the normal of observable radiatiop removes from a
vertical.

W, =w

8.6 SPEED OF LIGHT
BETWEEN MOVING BODIES

From d'Alembert's equation and the wave equatiom®biain the solutions
for the action, which depends on With velocityc; the phase of a wave moves in
space. If the changes of an acting body will happiesy will be spread with ve-
locity ¢;. Therefore it is called as the velocity of propawa of electromagnetic
action. The value; depends from dielectrie and magnetiq/ permeabilities of a
media between interacting bodies. If there areedsfit environments between

a them, then each of them will have a velocity of
! [ A propagation, defined by the propertiesnd 4.
S f At the motion of the receiver and the source
a At R the interaction between them depends only on their
relative speed, therefore electromagnetic waves
o differ from acoustic ones or
vs S Fig. 8.3 The propagation of acoustic waves in media, in
S oA R f“ which the sourc& moves with speeds, and the receiver
S ls . . . .
a At R moves with speedk in a direction of approach.
A5 the waves in water. The source of acoustic waves,
6 for example, the hooter of the motionless locomo-
s S R v tive, at p.S (Fig. 8.3a) at the moment produces

S Ja sound oscillations by frequen€ywhich are spread
LsAly opAt R in a motionless air with the velociy = 340 m\s.
a Atg ThroughAt = I/a the sound reaches the receiter

and for this timen = f At of oscillations will be

163




produced. The distance between them, i.e. wavdieigl = I/n = a/f. As these
oscillations are spread with velocigy they will enter in the receiver with fre-
quencyfg=a/d =f.

If the locomotiveS approaches the receiver with spegdsee Fig. 8.3), the
oscillations, produced by the hooter, being spreitld speeda in media, also will
be heard by the receiver throufyh=1/a. Let's underline, that the speed of a sound
has not been changed, as it is spread in medial@esl not depend on the motion
of a source. Durind\t the source creates= Atf of oscillations, will pass a dis-
tancevAt and will take a positiois '. Thus, the oscillations will be arranged in
lengthl —vs At = (@ —ovs) At. Then a distance between themlis (a —vg) At/n =
(a —ve)/f. As the oscillations are spread with speectlatively the receiver, the
frequency of a sound perceived by the receivet,hail

a a
fg = 3 f. (8.86)
If the receiver (see Fig. 8¢},moves to a source with speagdrelatively me-
dia, it comes nearer towards a spread soundheespeed of a sound relatively the
receiver will make

aR = a+1)R . (8)8

The sound will reach the receiver duriaty = I/(a + vg), during Atg the source
will createng = Aty f of oscillations, will pass a distaneg Atg and will take a po-
sition R '. The oscillations will be in length— (s + vg) Atg and the distance be-
tween them will be

Ar=[l = (vs +vR)Atg] /(Atg f),
ie.

A= a‘f”s . (8.88)

Such lengths of waves are perceived with spegdherefore, the frequency of a
perceived sound

a a+1)R
fp=—R = f. 8.89
R /1R a_l)s ( )

These rates are fair to the motion of bodies inewdbr example, at the mo-
tion of the ship, creating waves, and their acttona moving boat. According to
(8.89) the actions of waves on a boat depend orspibed /
of the shipvs and the speed of a bagt

[

. . . _— S
Fig. 8.4 Propagation of electromagnetic oscillations betwa vAL R
relatively moving sourc& and the receiveR. co At

The interaction of electromagnetic objects depenus
only on their relative speed. If the objects ardiombess relatively one another,
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the electromagnetic waves are spread between thdnspeed:,, irrespective of
the objects movement relatively media. It is tésdifby the experiments, from
which d'Alembert's equation (3.28) follows. At firthe magnet induces electro-
motive force in a conductor only at their relatim®tion; secondly, the moving
charge is equivalent to a current and creates ¢hienaon a magnet, which de-
pends on their relative speed. The interactionlefteomagnetic objects, for ex-
ample spools with a magnet, does not depend on istrabving or what is rest-
ing. It is determined by their relative speed.

From these positions we will consider the propagabf light between a
moving source and the receiver. Let's considet, dhalative distancebetween a
sourceS and the receiver the electromagnetic action passes with spgedhich
depends on speedof their relative motion (Fig. 8.4). Then the timEpropaga-
tion will be At = I/c,. For this time the source creates a quantity oilladonsn =
f At =f l/c,, and the distance between the source and thevezagill becomd —
v/At. At this distance there is of oscillations, therefore, the distance between
them, that is the wavelength, will be

A=(-vAt)/n=(-ovAt)c, /(f1)=@Q-5,)c, /T,
where
B, =vlc,. (8.90)

As the oscillations passes a relative distance dxtvthe source and the receiver
with speedt,, the receiver will perceive them with frequency

LR (8.91)

A 1-5

In this expression the speed of lightis unknown, which enters in the nor-
malised speeds,. From electrodynamics equations we have receivegichcal
frequency of oscillations perceived by the receiasr (8.84), whence the fre-
quency of oscillations at approach of the sourat the receiver ap = 0 will be
written

-8 (8.92)
V1- 432

The expressions (8.91) and (8.92) determine thguéecy of oscillations per-

ceived by the receiver, which is calculated byed#ht methods. Excluding them

from valuef,, we obtain the following expression for a normedispeed of propa-

gation of electromagnetic waves between the appingcsource and receiver

with normalised speeg.

v

5, =— £ h) (8.93)

" 1ep-1-82

where
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c, =c,/c. (8.94)

In case of removing receiver and soufte 0. At S — 0 the limits of expres-
sion (8.93) givec, =1, i.e. for want of motion of a source relativelytreceiver,

the light is spread with usual the spaedAt = 1 speect, = 1, i.e. in case of
motion of the receiver or the source with the ligheed the front of the oscilla-
tions moves together with a moving object and #heeiver will perceive these
oscillations, when the source completes with it.s@perluminal velocity3 > 1,
value ¢, is imaginary, i.e. the light oscillations do neach the receiver. The rela-

tion (8.93) is submitted in Fig. 8.5. /&= 0.6 and 0.8, = 1.2. The maximum
value is atg =1/ V2. The greatest speed of propagation of light betweeving

objects isC, pax = 0,5(\/5 +1) =1,207.

At small speeds the valyg? in a denominator (8.93) can be neglected, then

we obtain
c, =1+p3. B)9

This result coincides with the cases of motionhaf $ource or the receiver of os-
cillations in media. The expression (8.95) teddifiat at small velocities the light
speed is added with a relative speeaf approach of the source and the receiver
and is deducted, if they remove from each otherfollews from the graphic in
Fig. 8.5, this property is fair g< 0.3, and it can be used approximately up to
0.6. At large speedBit is necessary to take into account a precisdioalg8.93)
for the velocity of propagation of electromagnetscillations.

G At removing a source
1]

| from the receiver £ < 0),
1 speed of light between them is
less tharc;. At removing with
0.75 by light speed the velocity of
y propagation of light
0.5
// Fig. 8.5. Normalised speed of
0.25 light ¢, =c,/c, between bodies,
which move from each other with
0 normalised speef.

-0.8 -0.4 0 0.4 08 B

between the source and the receiver becomes emuard. This result has the
important value for cosmology. According to the btfesis "of large explosion”
the far galaxies are removed from us with speeaakecto the speed of light. The
speed of light propagation from them@fcan be very small, therefore, the time
necessary for propagation of lighttis= L/c,, whereL is the distance up to galaxy,
appears, to be considerably more than the time,fpas the moment of "explo-
sion"ts = L/c. That is we can see a galaxy, which has not geistThis inconsis-
tency is a serious test of the hypothesis "of laxgaosion”.
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It is necessary to note, that thevalue, entered by us, is not a usual speed
and it cannot be combined with velocities of bodigstion. It links the distance
between a relatively moving source and the receiard the period between a
creation of oscillations and their arrival (see.Fg}). Thus the distandet is con-
sidered at the moment of radiation of oscillatiomkis value characterizes the
time of propagation of action between two bodi¢sis limpossible to draw an
analogy between value, and speed of a soura] or speed of propagation of
waves in the water. In the last cases there is @rirahmedia, which motion is
possible to observe and measure, and it is pogsilfie the motion of bodies rela-
tively it. In case of electromagnetic interactisnch media does not exist (it is not
detected). Therefore, it is impossible to perceiakiec, as speed of any material
objects.

At small speeds of a source motion relatively #eiver according to (8.95)
their speed geometrically is added to the propagatielocity electromagnetic
oscillations. When the source approaches the receith velocityo, the light
between them is spread with spegd- o, but during removing the light reaches
the receiver with speed - v. This is confirmed by the observation of by theidu
ter shading of a satellite lo from different pointisthe Earth orbit, i.e. when the
Earth approaches the Jupiter or removes from ie @uthe difference of observ-
able times of shading lo the astronomer Olaf Reda&ined the speed of light
[47,48] in a 1676. In 1969 B. Wallace [122] notigbdt at probing of Venus, the
speed of radio waves is added to the speed of \tetats/ely the Earth.

In Michelson's experiments [4] and other investigat works the receiver
and source did not move relatively one anotherefoee the difference in speed
of light was not found. The principle of the lighpeed constancy, at a relative
motion of the receiver and source put in the bakis Theory of relativity, is in-
consistent.

8.7. THE PRINCIPLE OF THE RELATIVITY
AND ITS MEANING

This principle is one of the bases of the relafititeory. It has different de-
terminations and different understanding [71]. Egample, we will put the for-
mulations, used by the scientists of differentmdéons, in discussing the relativ-
ity theory. V.I. Sekerin cited the determinatiorB]4f the book by Landsberg
"Optics": "All processes of a nature flow past enifily in any inertial system of a
reference”. The inertial system of a reference system of bodies, which move
under inertia, i.e. without acceleration. A.M. Stwah [73] considers, that the most
valid determination of the principle of relativity given in a textbook [26]: "... All
laws of nature are identical in all inertial sysseof a reference ". The second de-
termination supposes a dissimilarity of proceseedifferent systems, but it super-
imposes to use the identical the laws, describhrega processes. As we have
shown, just this position is used in the theoryeadétivity. The distinguished ac-
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tions between the relatively moving bodies andrdsting ones are described by
identical expressions. Francly speaking, there deaation from the principle of
relativity here, as the interactions not insiddrerttial system, but between differ-
ent systems are considered.

Despite of the different formulations of a prin@pf relativity it means that
the linear motion mustn't change anything insidystem. A classical example of
a principle is the cabin of a vessel or compartnedra train, which moves with a
constant speed. If their windows are closed, if thiee airtight, if they are supplied
with an impenetrable screen for electrical actiois possible to agree with such
formulation of a relativity principle which is impsible to define: whether the
cabin moves or rests. But when the surroundingestbjare seen from windows,
when the air flows through the compartment, whenlifht of any source or the
radio waves are received in a cabin, when in tepastment there are charges or
currents able to interact with charges or currdotsted on ground, then it is pos-
sible to define motion of the observer, the valtisgeed and it a direction by any
of these phenomena.

So, the normalised formulation of the relativityngiple is fair for a system
of material bodies, which does not interact with Hodies of another moves rela-
tively system. Automatically, a principle of relty follows from a condition of
the interaction absence, for the behaviour of ®dfea moving system will be the
same, as in a resting system, because they aeetgat by the other ones. Thus, it
is necessary to notice, that the principle of relgtwill be realized for an accel-
erated system of material bodies, isolated fromettternal actions. For example,
in the freely dropping lift or in a satellite, orplanet etc. all motions happen as if
they rest, and gravitational actions do not appeathis case, the insulation from
a gravitational field of bodies of a system corssist the fact that the speed
brought from it by all bodies is identical and @e$ not change a picture of the
objects motion in a system relatively one another.

The principle of relativity has only historical @rest. It has appeared when
the interactions by the forces were described. There were problems in differ-
ent singularities of the motion and the interactidiodies. For example, the law
of inertia is closely connected with it, i.e. thestf law of mechanics was entered.
By it a body, on which the forces do not act, seast or linear and uniform mo-
tion. In other words, the behaviour of bodies wit have differences, by which it
is possible to define their motion.

Apparently, E. Mach for the first time has notiddadt many our laws and
principles exist in that way only by virtue of adeterminations. So, relatively the
first and the second laws of mechanics, given bwtide, in his work "Mathe-
matical Beginnings of Natural Philosophy", E. Maws told the following [36]:
"It is not difficult to notice, that the first argbcond laws are already given in the
previous determinations of force. According to thdsterminations, without force
there is no also acceleration, and, thereforeettseonly rest or linear and uniform
motion. Further represents completely unnecessanplbgy after acceleration is
determined as a measure of force, once againlidhat change of movement is
proportional to force".
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Let's return to a principle of relativity. After fileing the action (see chapter
2) as the acceleration of a body, and the forcegrasof the action measure no
problems arise, which would require the applicatioha principle of relativity. It
is clear without it: if the bodies move is uniforand rectilinear, and there is no
action on them, they will behave as if they arefoated, i.e. by only behaviour of
bodies, without communication with the other bodieg can not tell, if they
move or rest. Our problem is to detect the actmm& considered body and their
registration, instead of following a principle @lativity or other principles.

CHAPTER 9

NEARLUMINAL MOVEMENTS
INSIDE OF «BLACK HOLES»

9.1. CONCEPT OF A «<BLACK HOLE»
AS RATIO OF PARAMETERS

Let's consider the action of attracting centre goasticle, removing from it
along the radius particle with velocity on the radiug,. Let's define the size of
radius, at which the particle will be come off fratre attracting centre. For the
interaction by the classical law according to (3.88enR- c and velocity - 0,
we have

2
R) = - 'gl . (pl
%)
Such interaction is possible, if the radius ofaatting centrdR; < R,. If the veloc-
ity of a particlev, is equal to the light speed, a radius (9.1) in G3 Ralled gravi-
tational:

R, =-—4*. 9.2)

The particles with light speed at radiuses equdkt@and larger thamry will be
come off from the attracting centre, and the plasiclocated o, < Ry must have
superluminal velocity to be come off it. Accorditay(4.83) the maximum radius,
on which the particles with light speed can be reedofrom attracting centre at
(Rmax) = 0, will be

R = Ry (9.3)
" Ry /Ry -1 '

The particles reacR. at zero velocity, then return to attracting cerstnel drop
on it
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In the frameworks of CTR it was represented, thatlight consists of parti-
cles, on which the gravitation actions the samemsisual ponderable bodies.
Therefore, with a radius of a stR < R; the particle of light removed from its
surface, can not leave the orbit with a rads, and such star at distances larger
thanR,ax from it will be unobservable. That is, in the fament it will look like "a
black hole".

We have considered purely radial movement. In csebital movement of
a particle with a kinematic momehtthe gravitational radiuR, represents a ra-
dius of a pericentre of parabolic trajectary= - 0.5 (see definitior). That is,
the light speed is the second space velocity atrddius. Therefore, at any move-
ment of a particle with light speed at radiuges Ry it can not be come off from
the attracting centre. After a substitution of \ealy in (9.2) the gravitational radi-
uses according to (4.64) during a gravitationabacteceives a sight

Ryg = — 22+ M), (9.4)
G
and according to (107) at electrical action:
2 +m
Rge - _ CI1CI22(ml 2) . (95)
G mm,

We considered a question about "a black hole" enbtisis of a classical in-
teraction. At the gravity action in view of fingbeed of its propagation, by anal-
ogy with (4.58), the force of gravitation will deteine by the law

- Gmm,(1- B°)R
F= {sz_[/?x%]z}slz . (9.6)

In this case the particle having a velocity of tiglis we have already repeat-
edly showed, moves without a change of velocityer&fore, it will leave the at-
tracting centre on infinity with the same velocitf light. At this interaction, ac-
cording to (4.80), with the initial velocity,, the particle will leave infinity, if an
initial radius

Ro=-— 244y —=- R92 : (9.7)
¢ In(-5y) In-45)

At small 5, formula (9.6) coincides with (9.1). However, withproach of ini-
tial velocity to velocity of light 4 - 1), the radius i&,— 0, i.e. the light particles
from a surface of a body with any radius will ledlie attracting centre on infin-
ity. Therefore such body will not be representedplack hole».

For a conclusion about existence of «black holéss mecessary to have, as
minimum, two conditions. At first, the particles lafht must represent ponderable
particles. As we have shown in a chapter 8, lighihé action, but it is not a body.
Therefore, it cannot be shown as particles of lig@gcondly, it is necessary to
know the velocity of gravitational action. Now tkeare no experimental data
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about light speed of its propagation, so, therenarbases for the statement about
the existence of «black holes». Nevertheless, vilecamsider, in what situations
at different hypothetical statements the «blacle&wl(BH) are possible:

Nature of light Velocity of propagation of gravitaial action
Infinite Light
heavy particles BH —
Electromagnetic action — -

From the given table it is seen, that the «blade$ware possible only at the
classical law of gravitation. As in the General @iyeof Relativity the light speed
of gravitation is accepted then the introduction<bfack holes» in it frameworks
is an unconditional error [117] at any hypothet&tatements.

In this connection we do not consider the concegilack hole» as some ob-
ject of nature, but as a certain ratio of paransedsra radiuR,. Let's call it a light
radius, as the particle, attracted from infinity, dassical law of interaction, by
reaching this radius, gains the velocity of light

9.2. OBJECTS MICRO AND MACROCOSM
AS "BLACK HOLES"

If the radius of an attracting centreRs < R,, the movement of an attracted
particle can pass inside of a «black hole», i.e r#dius of a pericentre of the orbit
can beR, <R,. It corresponds to the parametex -1. One of such trajectories at
a=-1.12 (see Fig. 5.5) was shown in a chaptet 5. donsidering interaction of
elementary particles, it is possible to see, thatgarametea can be less (-1). For
example, if the radius of a pericentre will be ddoaa radius of a protoR, = Ry,
= 2.817+10" cm, then, according to (9.5) the parameter ofréwtion of a proton
with an electron isr = -1.956. There are different representations efsizes of
elementary particles, for example, the authors [@8¢ the following size of a
radius of a protoiR,, = 1.02310° cm. In this case, the parameter of interaction
can reach value = - 2754.

In far space the set of objects is observed, whioperties explain by a large
mass and small sizes. Now, they are interpretedlask holes» or neutron stars.
Widely, it is known that there are stars of a dif@ density. The value of a den-
sity varies in large ranges and its limits of liatibn are unknown. The astronomi-
cal objects with a radius, smaller th@nin many times, i.e. with the parameter
<< -1 are possible. If the gravitational actiorsggead with final velocity, the ac-
tion of such objects will be subjected to the I@n6§. Therefore, the parameters
movement of bodies round them, if they are knowili,alow defining the veloc-
ity of gravity propagation.

The shown examples from micro and macrocosm shuat,the research of
movements at the values of interaction parameter-1 represents a valuable in-
terest, therefore, it will be made below. In chafiteve have considered its possi-
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ble paths at variations of a trajectory parametex «; < 0 and normalised the
velocities in pericentres € 4, < 1. There were established three kinds of trajecto-
ries, depending on valug, in relation to parametef,. defined by expression
(5.41): 1) sub-lightspeed trajectoriest< S, 2) trajectories of acquisition of a
particle into a circular orbit a6, = B, 3) trajectories with light velocity at the
pericentress, - 1. As atf3, — 1 the radial velocity (5.39) has a singularity for
calculation of trajectories of the third type, weed the radial velocity (5.46),
normalized to parameters at an intermediate pBinto,. As well as in chapter 5,
at a < - 1 equations (5.2) and (5.46), and also (5.46),integrated on two seg-
ments: R > 1 andR < 1. The values of parameter of trajectory a \hgs fol-
lows: a,° = -2; -4; -10. The parameter of trajectary, normalised to the velocity
at the pericentres, i.e. to light, is determinecbading to (5.47), and the parameter
of interaction, according to (5.45) is equal to
a=2d;. (9.8)

The values of normalised tangential velogiy varied so;5, = 0.9; 0.7; 0.5;
0.3; 0.1. The lower valug, was set so, thatr < - 1. Therefore, all trajectories
shown here differ from trajectories in chapter 8 anworks [59, 60], where they
were calculated atr> - 1.

The values of normalised radial velocity varied gg:= 0; 0.1; 0.3; 0.4; 0.5;
0.6; 0.7; 0.8; 0.9. The valyg, = 0 corresponds to a premise of an initial potnt a
the apocentre, as the integration is conducted fom 1 up toR = S. It will be
final trajectory with the least radius of an apdeenWith further increase g
the radius of the apocentre will increase. Excegggment of integrationd R =
[Bo there is a segment<l R < R ,, where the radius of the apocen®e, is deter-
mined from a condition,® = 0. With further increase g, the radius of the apo-

centre tends to infinity. From a conditiohm 5,0 =0, according to (5.46), the

R- o
value Gy will be written
0 2
2a71 By

P
Ji-B83

With radial velocityS, = B, the trajectory becomes parabola-like. It is neces-
sary to note that the expression (9.9) is identiwa&xpression (5.50). With further

increase of5,, the trajectories become hyperbola-like and Wbﬂmzwll—ﬂfo .

they degenerate in a direct line, on which theiglarmoves with light speed.

After the integration the results were conducedthte parameters at the
pericentres. The calculations were executed bystasgie of the packet
MATHCAD. The example of the program is given in Amglix 3, and calculated
trajectories are given in Appendix 4.
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,Brp =1_,Bt% —€ex (9.9)

9.3. TRAJECTORY AT VARIATIONS OF

RADIAL VELOCITY

As we havealready noted, at the integration ongmset R < 1 during de-
creasingR , the radial velocity (5.46) decreases and becamaal to zero aR =
Bos 1.€. this point is a pericentre, which radius

Rp =RoBo=Rovo /. -

(9.10)

As all these trajectories are subjected to a cemtien law of kinetic moment,
(4.66)h = Ryvy = Ryvp, the velocity at the pericentres can be written

vp =01oRY/ Ry

(911

After a substitution of a pericentre radius fronil(® we obtain the light velocity
of a particle at the pericentres= c;.

y
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The changes of parame-
tersayg, Bo in the considered
ranges have given the
changes of interaction pa-
rameter in the area - K8a <
- 2. Let's consider the trajec-
tories ata = - 2 andB, = 0.5
(Fig. 9.1) when we change
radial velocity SGo. In this
Figure and the other ones
with the purpose of improv-
ing the image of trajectories
the different scale on axes
and y is used.

Fig. 9.1. Trajectories inside the
«black hole» with the following
parameters:

af: -2;B=05;a=-2:

-1.0 0.0 X
N° 1 2 3 4 5 6 7 8
_,3,0 0 (01|03 05 |0.659 0.7 | 0.8 |0.866
Ralbror 2 |2.0312.355 3.909| 0* [0.419*(0.807*| 1’
Pa 100.8101.4108.0) 119.9(129.7) 110.5( 95.9 | 90
-FO.S 3.8793.987/5.053/10.473 --- --- --- ---
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When S, = 0 particles, moving from the pericentre € 1, Y = 0) round attract-
ing centre g =0,y =0) during'FO’5 = 3.879 come in the apocentrg = 2. It is
necessary to note, that all considered resultijdinyg in Figures and in Appendix
4, are normalized to parameters in pericentieR,. From here a halfcycle of or-
bit

Tos =-FO,5Rp /c. (9.12)

For this halfcycle polar coordinatgsvaries at 1008 i.e. the angular period
of movement along the orbit makes 201 #at is rather less tharv2With in-
crease of the radial velocif§, the radius of the apocenti, , the angular period

and the time of movement along the orbit is incedadVhengS, = B, = 0.659
radiusesR, — 8 (see trajectory 5 in Fig. 9.1), i.e. the trapegtbecomes parabola-

like. Unlike a parabola, it moves to the infinity g = 129.7, not at 180. With fur-
ther increase off, the angle of deviation of trajectories decreases, atf,, =
0.866 we obtain a direct trajectory 8, on which plaeticle moves with light speed.
When a = -2 the radius of a «black hole» is twice bigdaart the radius of
the pericentre. Therefore, the first trajectorg,(= 2) is completely inside a

«black hole» and only at the apocentres concesnsuitface, and the particle on
trajectories?, 3 and4 periodically is pulled out of it. The particle dwyperbola-
like trajectories6-8, moving from infinity, enters inside a «black helenoves
there and again goes to the infinity. The partarieparabola-like trajectory can
be pulled out from the area of a «black hole». lBuall cases the particle at the
attracting centre moves with the velocity, appraaghio light speed.

As it is seen from Fig. 9.1, and also from expm@sgb.46) the trajectories
are determined in three parameters; Bo, Bo. However, at all trajectories at the
pericentres, the velocity is identical and is edaal. Therefore, at the pericentres
the trajectories are determined by two parame8wosthe parameter of interaction
a, according to (9.8) and (5.47), is equabte 2a105,. If the parameter of inter-
actiongy is known, the parameterhas a radius of a pericentre

_ 21
R, o . (9.13)

The radius of a pericentf®, and the velocity, in it completely determine the
movement of a particle. So, the value of radiabey 5, does not influence on
the formation of trajectory at the pericentresgiltes the idea, that the particle
which has come nearer to attracting centre withvislecity c;, can then be re-
moved on any trajectory, including on light onengig. 9.1. Therefore, the point
of the pericentre is unstable and the small distocks in it can conduce to essen-
tial changes of a particle trajectory. With refareno a microcosm it can be the
reason of the radioactivity of elements.
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9.4. TRAJECTORY IN A CASE OF DIFFERENT
TRANSVERSAL VELOCITIES

In Fig. 9.2 the trajectories at the same parametgbut with greater trans-
versal velocity,3, = 0.9 are presented. The parametdn this case has alsom
increased, and the radius of a «black hole» intix@s exceeds a radius of a
pericentre of trajectory. A = O trajectories, in the comparison with similaes
in Fig. 9.1, has the radius of an apocentre an@tigelar halfcycleg, in 1.5

V————— M —
1 | 37 Y]
1 ]
7 | -
2.0:—_| 0.8 —
1 ]
1 1 3
1.5:——| 0.6 -
1 | N
1 | i
] | | ]
1.0:__| | 0.4 -
1 [ i
4 ]
. L ]
0-500||I|l|0i4|""""|_ 0.2 ||||||||!||||II|||||||||||
. . 0.8 X 0.85 0.90 0.95 x

Fig. 9.2(at the left). Trajectories inside a «black holéth following parameters:
al =-2,8,=0.7,0=-28:

N° 1 2 3 4 5 6 7

_Bo 0 01 | 03 | o5 | oees| 07 | 0714

RalBor | 1420 | 1437 | 1521 | 1913| o | o83 | v
é: 637 | 642 | 611 | 838 | 1172 | 936 | 90
Tos 16 | 1625 | 1.864 | 2.934

Fig. 9.3(on the right). Trajectories inside the "blackdfalith following parameters:
ad =- 2;G0=0.9;a=-3.6:

N° 1 2 3 7 5
_Bo 0 01 | 03 | 04 | 0435
R,/B. | 1111 | 1113 | 1139 | 1232 | 0

é; 305 | 309 | 344 | 445 | 1105

Tos 058 | 0552 | 0673 | 0942 | -
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times smaller, and the temporary period is les8 times. The behaviour of re-
maining trajectories is similar. As is seen, trageesl, 2, 3, 4in Fig. 9.2 are in-

side a «black hole», 8B, <R, =-a .

In Fig. 9.3 the trajectories are given at great@ngversal velocity are. When
Bo = 0 radiusesR, = 1.111, i.e. it does not differ from the radidsagpericentre,
and the angular halfcycle is equal to 3016the particle moved in such orbit, per
one turn it would make six hops on the altitudel@.tadiuses. As follows from
Fig. 9.3, all closed orbits are deeply inside aagklhole»; the greatest radius of
the apocentre is in 3 times Ieﬁ%J =-a . So, the increase of transversal velocity

S0 conduces to decreasing a hop size of both angathtime periods.

9.5. TRAJECTORY AT CHANGE
OF INTERACTION PARAMETER

The two times increasing of a module parametér(see Fig. 9.4) conduces
to the same increasing of the interaction parametarcomparison with a situa-
tion shown in Fig. 9.1. At the same parameter térictionzs the radius of the
pericentre, as follows from (9.13), will be 2 timess. However, as it is seen from
Fig. 9.4, the relative radius of the apocenRe at B, = 0 has not varied (trajec-
tory 1), though the halfcycles, depending on the angtkétane, have decreased.
The parameten,® similarly influences on the other trajectoriesréléhe trajecto-
ries1=5 are also inside a «black hole».

In Fig. 9.5 the trajectories are presented with Imgieater parameter,’. In
a comparison with Fig. 9.1 the parametdras increased in 5 times, but the radius
of a pericentreR, has decreased in 5 times. However, the size oaploeentre
radius R, has not varied for first orbit, and for remainiing small decreasin®,

with growth of radial velocityf, is observed. The halfcycles depending on the
angleg, and time'ITol5 have a smaller size in a comparison with trajéesoata;’

= - 4 and (-2). Thus, the increase of the moduyfedoes not influence much on a
relative radius of the apocentre, but reduces #i&cycles ¢, and -Fo,s- At the

same time the absolute radius of the orbit decsedseit is seen, the variations of
the parameters;” and 3, result approximately in identical variations cdjacto-
ries, but it the type of trajectories does not gearWith small radial velocities, the
trajectories are final, with a halfcycle smalleathvz and they are hyperbola-like
at large radial velocities. The final trajector@s be inside the «black hole», and
can go out of it.

At the pericentres the trajectories, , are facyualaracterized by one pa-
rametera, which is possible to consider as a "depth" ofgbéacentre immersing
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in the «black hole», i.e. parameten)= Ry = Ry/R, shows, how many times the
radius of the «black hole» is more than the radiuke pericentre. In calculations

it varied from R, = 2 (see Fig. 9.1) up t&, = - 18 ata;® = - 10 andB, = 0.9. In

accordance with the increaBg the final trajectories come nearer to the attnacti
centre, i.e. become less prolonged, and immersmgar in the «black hole».
Their halfcycle decreases on the angle and timel the hyperbola-like trajecto-
ries become less curved and come nearer to atfajbttory.

yT
3.5; _______ 5
301 L ___I 3.5—:
. 3.0
253 ———L___— ]
] 2.53
204+——-b—— .
] 2.0
RN 153
]‘()"‘IHI]]]II!HIIII ].0—||||||||||||||||||||||||||||||
-0.5 0 0.5 X 0.7 0.8 0.9 X

Fig. 9.4 (at the left). Trajectories " inside a black hblgith the following parameters
af =-4;5,=05;0=-4:

N° 1 2 3 4 5 6 7
_bBo 0 0.1 0.3 05 0.7 0.8 0.807
Ralbr | 2 | 2011 | 2114 | 2436 | 4025 | 3893 | ©

92 768 | 772 | 792 | 842 | 956 | 108.6 | 108.8

Tos 2708 | 274 | 2975 | 3.714 | 7.681 | 1965 | 2.99 10

Fig. 9.5(on the right). Trajectories inside a “black hoiecase of following parameters:
al=-10;8,=0.5;a=- 10:

N° 1 2 3 4 5 6

_'B’O 0 0.1 0.3 0.5 0.7 0.864
Ra/ﬁw 2 2.004 | 2.037 | 2.126 | 2.384 o

D2 66.1 | 662 | 669 | 68.4 | 720 | 971
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| T |2.121| 2.133| 2.188| 2.334[ 2.71 |
0.5

On all trajectories the particle, approaching teeigentre, tends to the light
speed. After reaching the pericentre, there is maicgy in movement. As during
the equations integration the radius of the petieeaccording to (9.10) tends to
such value, which is equivalent to the light speethe pericentres, the movement
of a particle after the pericentre along the unbight trajectory (see trajecto
in a Fig. 9.1) is most probable.

9.6. MULTANGULAR ORBITS

The movement of a particle after reaching a petiegn unstable. The minor
deviation of velocity from light into direction afecreasing will conduce to a cur-
vature of movement of a particle. Represents digif interest how limiting
transition of speed of a particle with its approgehicentre is actually carried out.
If the velocity of a particle will differ front,; ng parameter, which represents tra-
jectory on a small, this value can be that missi of a particle afiassing a
pericentre. That is, to each trajector y

there will correspond parameted. . P .
Therefore semiperiodes segments 3l (2] LN
trajectory can be to be connected ar 1% B N\
receive continuous trajectory of a parti 0-8 o B
cle. In case ofp, = 7k, wherek - 0.4

integer, the particle during a full revo- ¢
lution will make k number of periods _, 4
and it the trajectory will be constant ir N

space. Such situations can be muc®? SS S~ jf
We have found them for cagg® = -2 12 N B %

andB,=0incaseok=2,3and 4. 16 9 _

. : . -1.2 -0.8 -04 0 04 0.8 X
Fig. 9.6.Stables multangular trajectories

inside of a «black hole»
in case of following parameterszf =-2;60=0.

N1 Ao a | R | 42| Tos | T

1 0.552 | -2.206 | 1.815 90 3.051 | 12.2
2 0.722 | -2.888 | 1.385 60 1.454 | 8.72
3 0.815 [ -3.26 1.227 45 0.952 | 7.62

In a Fig. 9.6 such are submitted stables in spcghit. On orbitl, have the el-
lipse-like form, the particle is gone round attimagtcentre, which position coin-
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cides centre of orbit, instead of with a focal pplriased relatively centre. Rela-
tive period of cyclical movement of a particle arcls orbit T, = 12.2. On direct

segments the particle is gone almost with lighbeiy, and on curved - with least.
Orbits 2 have three direct segments, and at @bifour. The movement of a par-
ticle happens on a triangle and square with rourtdetbps. In case of large val-
ues of parametar the tops of such polygonal orbits will be more acut

The small increase of velocity of a particle atuead will cause to reaching
by it velocities of light, and it will abandon attiting centre. This process can be
observed in a microcosm and, probably, such odtisilate the radioactivity of
elements. Multangular orbits can be observed inaaratosm, if the velocity of
propagation of gravitation is final. The star orlswrbit will give irregular radia-
tion: on direct segments because of smaller timpre$ence it will be perceived
less bright, and on angles - brighter. Therefonegieed light should be modu-
lated definitely.

CHAPTER 10

SUPERLUMINAL MOTIONS
10.1. EXAMPLES OF SUPERLUMINAL MOTIONS

The position about impossibility of superluminabtions in modern physics
was formed, mainly, in the interpretation of twgermental facts. Unsuccessful
attempts to measure velocity of the Earth relagiveminiferous ether led to the
idea, that the addition of the light speed andntis¢ion velocity of the Earth in the
exotic way, when the light speed remains constamipssible. The second group
of facts is connected with the diminution of ancélen acceleration approaching
its velocity to the speed of light, which was expdal as the increase a particle
mass and its rushing to the infinity with approaghio the light speed. As a parti-
cle mass must not be infinite, speed of light Wil unattainable. If the charged
particle gains speed of light in another way, iBssmbecomes infinite. Therefore,
the exclusion of superluminal motions must be ursiak

This logic and interpretation of the facts werenfed under the influence of
Lorentz's transformations. After they were givemamsformation, sense of space,
time and other parameters at transition betweerante systems, the interpreta-
tion became logically closed.

Actually, the ether as media, in which light isesgded, does not exist. The
diminution of electron acceleration with its spegdwth is explained by the fact
that the force of action on it depends on veloditie have defined the value of
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force and with its help have calculated the intéoacbetween the charged bodies
of both magnets. Space and time do not vary atréresition from a motionless

body to a moving one. Thus, the exclusion of swpeirial motions is not neces-

sary, as it has no a basis.

The motions with superluminal speed exist in tlley surrounding us. For
example, if two accelerators, located at poitandC at the distancel 2= 5985
(Fig. 10.1.), will emit one another towards thetigdgs with velocityu = 299000
km/s, then in one microsecond each from particlifispass a distanck= 299 m,
and they will meet at the poiBt That is, the relative distanc&i® passed by par-
ticles duringt = 1+10° seconds. Velocity of one particle relatively amotis o =
2l/t = 598000 km/s, that makes almost double speedylof ISuch situations are
observed in the experimental installations with ¢benter bundles of particles. In
these installations the interactions of particlapgen at relative velocity of the

w=ec u=c Particles, reaching double speed of light. Many

— B <—C physicists agree with this situation [29, 75].
A

H;ﬂ Fig. 10.1.Double speed of light in relative motion.

In 1963 G.D. Lomakin [30] advanced an interestmmgof of superluminal
particles existence. Determinating the lifetimeuof mesons, the passed way by
them is divided into speed of light. Such time itd Is more, than the lifetime of
slowu - mesons. As the result of experimental data amalyomakin has come to
a conclusion, that a longer way, passed by thedelpa, proves, that their veloc-
ity is more than the speed of light.

It is conventional, that the space particles eimethe atmosphere of the
Earth with the light speed. As the Earth moves ttogiewith the Sun along its or-
bit with velocity 300 km/s, the excess above spefelight will make only 0,001
part. However, in space there are objects, whidhcity is compared to speed of
light. If such objects generate the flows of pdes¢ their relative velocity can
much exceed the speed of light.

A characteristic indication of superluminal motioha particle is the its light
radiation, known under a title of Cerenkov's radiat(Fig. 10.2). Here flashing
particle, moving with superluminal velocity > c, at the momerit= 0 is at the top
of a cone. Earlier in a moment it was at a distance, =ot;, and light, radiated

by it, reached an orb by a radiag = ut;. At a consequent mometj <t, the
particle was at the distand® =ot, and light, radiated by it, reaches the sphere
with a radiusa, =ut,. It is fair for any moment. Therefore, the signaéiated

by a particle, along the own way of the motion freused on a conic surface,
which apex angle is determined so:

sina=%—a——u/v. (10.1)
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The surface of a cone, thus, represents the camatettfront of action. In case of
sound oscillations this cone is known as Mach'secamd the front of action is
called a shock wave. For light speed- c, , the angle between velocity of a parti-

cle and normal to a cong =arccos€,; /v) is known as Cerenkov's angle radia-

tion. Such radiation is ob-
served at passing by the
particles with sub-
lightspeedo = ¢ in fluid, v>u

a, =ut,

Fig. 10.2. Cerenkov radiation sina=%=%=%

with the anglef .

b,=vt,

b,=vt,

la—'"""" 5| Mach's cone

where speed of light
¢, =¢/n, wheren - index of refraction of fluid. At large n the slightspeed of a

particle becomes tens per cents more than the sgfelgght in mediac,. Such

radiation is widely used in Cerenkov counters ehentary particles.
The existence of motions with superluminal velpcit>c, in media, but

with smaller speed of light in vacuum< c, conficts with STR. We have shown
that all electrodynamics equations, including Lazemnansformations, depend on
speedc;. The existence of velocities at> ¢, is determined for different medias

various ¢, at, is the general rule. As the speed of lightaeuum is a particular

case of media with = u = 1, then a special rule follows from the genera: the
velocities of motion, which are more than the speklight in vacuum, are possi-
ble.

Many investigators affirm [10, 15, 38, 72, 90Jathhe space particles, com-
ing in the Earth atmosphere, create Cerenkov liadiaBuch radiation can be ob-
served at moonless night by the unaided eye.dbigirmed by the numerous ex-
periments, that the observable meteors as an tasewous striking in the sky co-
incide with the particles gushes of high-energy, &wxording to Dobrotin. [15]:
"Galbraith and Jellies have shown, that the flashebke night sky coincide with
the pulses in the counters and consequently grelatéd by Cerenkov radiation”.

For explanation of this fact within the framewarkthe Theory of Relativity
it is affirmed that the velocity of particles indlcase exceeds the speed of light in
the air, but they are less than the speed of ligliacuum. The stretched character
of the coordination of observable superluminal mwtvith the Theory of Relativ-
ity is obvious. The speed of light in the air=c/n, where an index of refraction

of an air according to [15] depends on its density

n=1+2.900" [plp,,
i.e. the speed of light in an air on the sea léyet p, ) differs from the speed of
light in vacuum on
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d =(c—¢;) 100%E = (n—1)[100%h = 0.029%.

As with altitude density of the ajir decreasesi decreases, too. If to admit,
that the velocity of particles does not exceed speed of light in vacuum, it rhast
in rigid limits ¢ > » > c(1 —9). This corresponds to the cone apex angle of super
luminal radiation, distinguished from 90n the value of the ordér i.e. the cone
degenerates in a plane. A characteristic propdr§eoenkov radiation has a place
only at an obviously expressed light cone. Suchatixh is given in the refer-
ences. Therefore, the observable Cerenkov glowfiésstthat the space particles
enter in the atmosphere of the Earth with veloggater than the speed of light
in vacuum.

So high velocities of space particles can be Ktpd by the different rea-
sons. One of them is the gravitational attractigst's consider what velocities can
give astronomical objects to a body, which, witmozaitial velocity forced by
gravitation, will come nearer to a surface of ohj&alculated on (5.27), the para-
bolic velocitiesv ,, are given in the table.

Object m, , kg R, m p, kgim?® | 0pam/s Source
The Earth 6.610% 63700° 552M10° | 1175M10° [16]
The Sun 19810%° 14010° 14110° 435010 [16]
White dwarf
such as a star df 2510% 200° 6110 130107 (16, 21]
the Leyton
Neutron star | 4500% 8M10° 2010'® 27010° [21]

As it is seen, they vary from 12 km/s for the Barp to 270000 km/s for a
neutron star. The velocities of bodies can be langhich are forced by the qua-
sars, kernel of galaxies or so-called candidatéblack holes". That is these ve-
locities can exceed the speed of light. With veiesiof such order, the bodies can
be rejected from attracting centres or to exchamgeng themselves.

By new methods in astronomy - the radio- and x{edgscopes in the last
two decades many objects moving with velocitiesgdaspeed of light [35] are
revealed. In the article [120] 30 strong extrag@tacadiosources, which have
compact components with visible tangential velesitiarge speed of light. One of
the authors of the article, R.C. Vermaulen, indtiser work considers statistical
properties of superluminal components, which aredadn 66 galaxies, quasars
and lacertides. The motions of jets, extensiondifffise objects, relative motion
of parts of breaking object, etc, are observed.example, the observation of the
radiokernel of quasar 3C395 on frequencies 5 aGdsHz (centimetric range of
waves) from 1979 to 1985 showed [111], that it ¢stesof three components. The
distance between the kernel and the slowly movorgponent makes 5 m/sec (arc
milliseconds). The third component moves into dicetof last one with superlu-
minal velocity. Its angular rate is 0.64 msec/years
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The work consideres [106] the motion of two comgs of a source
GRS1915 + 105 rigid X-rays from March 27 till Ap80 1993. The unaccelerated
deleting of components from each other with velggierpendicular to the line of
observation and equal for each 1.25 and 8,6% observed. Their relative velocity
makes 1.2, i.e. reaches almost double speed of light.

1979.44 198052 1981.00 gaaaggaza.m;@waul &
l - (
S Ulce 2 mes
- @ (\Q @,ﬁu« c2
) P (M7

Fig. 10.3.Radioimages of quasar (Internet, according to Ritetta / Space Telecope Sci-
ence Institute).

The radioimages of quasar 3C345 (Fig. 10.3) aredfizn the waves 10.7
GHz from 1979 to 1984. In it the velocities of jets exceed the speedghtt in 7
times, if it is really exta-galactic and is removed 1700 megaparsecs, as it is
considered by the majority of astrophysicists. Ehate messages about velocities
of motion, reaching 40 speeds of light. As in ST&rfeworks such motions are
impossible, the attempts of explanation of obsdevalppearances without viola-
tion of a principle of limiting speed are undertak&he most widespread explana-
tions [5, 106] of superluminal transversal velodlgre are the selection of such a
source direction of motion, at which its the sugiitspeed will be considered as
superluminal. The given approach, naturally, camebite the superluminal mo-
tions: the angle between the velocity of object #mel direction of observation
should be determined by the results of measureménstouldn't be calculated
from the supposition, which they want to prove. Tmalysis of this approach,
which is shown in the work [110], brings the authmra conclusion, that the ob-
servable superluminal motions represent seriou®feke relativity theory.

So, the existing objects in a deep space canlgdées superluminal veloci-
ties and such velocities are noted. Moving bodiest jats of substance with simi-
lar velocities create flows of elementary particietich velocity is also superlu-
minal. They enter in the atmosphere of the Eantbate Cerenkov radiation and
generate showers of secondary particles, whiclifytest huge energy of space
particles. Millenium Twain [119] has paid attenticdhat such properties of ele-
mentary particles, as their mass, charge and radiude coordinated with a mag-
netic moment and a pulse moment, if they repreaesttucture, rotated with su-
perluminal velocity. He has come to a conclusidmt tour entire world, both
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macro and micro is superluminal, i.e. there areedsjin it, which move with ve-
locities larger than the speed of light.

It is necessary to note that in modern theoretaysics the concept
"tachyons" [3, 19, and 39] is entered. There amothetical particles, which must
satisfy STR. Their imaginary mass is postulatec S¢ientists investigate, how to
break a principle of causality with the help ofttgons, i.e. the effect must pre-
cede the cause. A title "tachyons" means overtakimg. Unlike such fancy
tachyons, we consider actual superluminal motions.

10.2. OBSERVATION AND INTERACTION
AT SUPERLUMINAL VELOCITIES

Obtained as the result of calculation the suparahwvelocities of far astro-
nomical objects cause many problems. To decide thamimpossible without
understanding, how, as the superluminal objectsldhoe observed. The analysis
of activities on explanation of superluminal mosds, 35, 106, 110] shows, that
there is no conventional method of their considenatWe think, that this problem
contains many vague problems. Let's analyze thereation of such motions on
an example of supersonic ones. Let source of s&(fiy. 10.4) at a moment=
0 moving in media with velocity > a is in a pointS. In this media at the distance
p there is a motionless receirThe sound oscillations propagated in an air with
the velocitya, were imposed on the front as Mach cone with thexaanglea,
equal,

sina=a/v. 0(2)
X
Motionless relatively S/ s 'y 8D %gXS,
the air the observeR
will hear at this mo- B |p
ment a source at the
point S, located on a R A

Fig. 10.4. The observation of su-
personic (superluminal?) objecss
as a pair of running up imag8&6

perpendicular to the
front SR The source
has passed a distanc
S'Sduring time and S/ .

T =S'Sh,
(10.3)

and the sound for this time was spread at therdista

S'R=Ta=SSina. (10.4)

A bit latert the source has moved exactly to the pdit and Mach cone
will take a positionS, A, where
SS =RA=ut = x. (10.5)
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Herex = tis a symbol of the passed distance.

After passing front the receiv®will perceive a sound, which has reached it
from a source found, as it is seen from Fig. 18t4nce in two points§ and §' .
At a moment t the sound will also reach poiBtand C accordingly, located on
Mach coneS A. Thus, the receiver, after passing the front, véfjister a sound

from two sources§ and §' . In case of light the observer of a superluminal
source (if the analogy to a sound here is allowadll)see it at once in two posi-
tions. Thus, after passing the front, the seencgoat a poin&' will bifurcate and
further will be observed as two sourc8sand §' . Let's define the motion veloci-
ties of two images, observed supersonic (superlaljrsource.

From a triangleAS/ SR it follows:

S/R? =§/S? + RS? - 25/ S[RS[tosa. . (10.6)
Let's expressSS, throughS'S andx:
SS =SS+x (10.7)

The distance between the observable soBtalso § can be written:
y=SS-§S. (10.8)
Let's expres®SandS'Sthrough the aim distange
RS=p/sin g, 0(2)
RS p

SS= =— .
cosa sina [tosa

(10.10)

Substituting in (10.8%'Sand §'S from (10.7), we obtain

=— P _g5+x 10.11
y sina [tosa SIS X (10.11)

From a triangle4S/S, B, with allowance forSB = SR, follows
S S = SBisina = SRkina . (10.12)
Whence, with allowance for (10.7), we discover

SiR=SS Bina = (SS+x)sina . (10.13)
We substitute in (10.65R andRSfrom (10.13) and (10.9) accordingly. After

transformation we have:
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2
52259 P iydg?a|+——P  x20g22.=0. (10.14
= S[S(sina [Cosy J aj sina [CoSa J ( )

The solution of a quadratic equation (10.14) wdl b

SSs=xtg2a+—P + ,1 \/x2 tg* a+2xptg® a . (10.15)
sina cosa ~ sina

By (10.8) and (10.10) we will expreﬁ'S throughy:

I p
S= ———— -y, 10.16
3 sina [tosa y ( )

Then the distance of observable object y, depenagiintihe objects distancg aim

distancep up to the observer and angle of Mach canaccording to (10.15), will
be written

y=-xtg’a + _i\/xztg“a + 2xptg’a . (10.17)
sina

Two signs+ determine two position§’ andS of the observable object, which at

the moment is at the pointS; (see Fig. 10.4).
So, the supersonic object, located at the piat the moment of overfilling
front on the receiveR is observed at the poiBt Then it bifurcates: one obje§

moves in the direction of the objegtand otherS' moves in the converse direc-
tion. Let's define velocities of motion of obserlabbjects:

(10.18)

Herep is the aim distance, and= ot, wheret is the time counted from the begin-
ning of the front arrival to the observer As it is seen from (10.18), at the initial
moment X — 0) velocities of motion of observable objects va# infinite. With
the course of timex( - ) the velocity of an image in the direction of thigject
motion, with allowance for (10.2), will be

vy = vg?a (1/sina -1)= va <a, (10.19)
vta

and in return

Vg =-0 I]gza (A/sina +1)=- vaa <-a (10.20)
»—
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It follows from here, that the absolute velocityasf image motion in the opposite
direction is more, than in direct one. In the dirdicection the image moves with
subsonic speed. At the motion of an object withdbend speed = a, (10.2) the

angle of cone Mach igr = 9C°. The velocity in the opposite directiori - 00,

and velocity in direct, as follows from (10.19) JMde

vg =05 (20)
In this case the observer will see object, moviognfinfinity after the front over-
filling on him. Originally, the velocity of motionf an image will be infinite. Af-
terwards, it will come nearer to &@5With such velocity the image of the object
will be removed from the observer in a directiorthad object motion.

At the motion with velocity > a the object first, is observed (see Fig. 10.4)
at the point S', then its image will move to thi &nd to the right from the point
S To the motion to the left happens with higheroedly, than to the right, and
soon disappears.

The motion of a direct imag& happens at the smaller velocity and is ob-

served longer. The image will be removed from theeover with decreasing ve-
locity, and at a longer distance its velocity vaéicome less than the sound or light
for the cases of superluminal motion. This ressiltélatively interesting. If the
observer has missed a moment of the front ovedjllthat is relatively probable
during observing the astronomical objects, therrettnage S/ will disappear, for

him and he will see a dire & moving with sub-lightspeed.

The last example shows, what exotic situationgassible at observation of
superluminal objects. Therefore it is necessargralyse the results of observing
as macro-objects, so as micro (for example, spadé&fes or elementary particles
in nuclear physics and during acceleration) witbvahnce for the observable ve-
locities (10.18). It is seen, that if we do notirste this phenomenom in physics
of elementary patrticles it can lead to the inteigtien of superluminal particles as
the birth of a pair of two particles.

The author could observe these actions of therkupmal motions in the
childhood. We have seen supersonic military planethe sky long before the
information about them appeared in the press. Sugde the pure sky, where
there were no outside objects, the explosion ot slas heard. The place of a
sound source was not determined, because the ditleddin the whole space.
Then from a certain point in the heaven the sowfdsvo removed from each
other planes were perceived. Later we learnedscoglier plane, creating a sound.
It was far ahead, closer to the horizon of follogviim a sound image. Then the
plane left for limits of visibility, but its sountinage still created the illusion of a
flying plane.

We have considered the problems of superluminalom® observation. The
other group of problems is connected with the axtBon of bodies at such mo-
tions. Let us research a singularity of interactiécharged bodies at superluminal
motion. At 5> 1, as it is seen from the law for force (4.92)certain angle®
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betweenR and the vector of velocity , the denominator is a real number and the
expression for force exists. If we consider a mgwhargeq;, at 5> 1 it the act
on a located ahead motionless chaggevon't have time to be spreaded. There-
fore, the interaction between bodies will begin,ewhthe chargey, is behind a
chargeqy, i.e. atg > 772. It follows from (4.92), that the denominatoreigual to
zero at

singy = 1. (10)22

As ¢y > 712, (10.22) is identical (10.2), thus
Py = - a. (10)23

At value ¢y, according to (10.22), the denominator (4.92)jsa to zero, and the
force tends to infinity. Thus, a moving chamgewill begin to act on a motionless
chargeq,, when last gets on the front of Mach cone. Insitdeh cone the force of
a charge actioq; on a chargej, will be final, but opposite at a sign. It is stipu

lated by a negative sign a numeratbt (32) in the law of force (4.92). Thus, the

charged bodyy,, located inside Mach cone, will be attracted tthargeq,, and at
the opposite sign it will be repelled.

We will consider the isolines of force at a supsrinal motion. Similarly
(4.93) we will record an equation of constant vadfiéorce line:

2 _
(1— /32sin2¢)
where
B=- S const (10.25)
eF

Fig. 10.5 The isolines of forces
of action of a charged body, mov-
ing with superluminal velocity
to the motionless charged bogy
located at on different angular
distances from it, having different
values of normalised velociis.

The expression (10.24) 8t= 156 .

1 is represented in Fig. 10.5 in A

polar coordinates. The isoline

of force (4.93) of motionless

charged bodyg; is shown by

the circle with radiusR = 1.

From a Fig. 10.5 it is seen,

what atf < 1,5 the isolines in 240" 200"
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areag = rrare situated inside a circe= 1, i.e. in this area the action forces of a
moving superluminal charge are less motionless thamnes of a fixed charge.

With approachy to @y the isoline tends to infinity, i.e. the force bayoall
bounds grows. AB > 1.5 the isolines are outside of a cirBle 1, i.e. the force of
action of a superluminal charge is more force ofiombess one.

The tops Mach cones at differefitare placed in the centre of a charge
and the formings are parallel to the isolines. &ample, a cone with a polar an-
gle gy = 120° is Mach cone #~ 1.2. From Fig. 10.5 it is seen, that with increase
L the apex angle of Mach cones decreases. At lgged of motion,£= 1), Mach
cone is degenerated in a plane, perpendicularlteitieso.

10.3. ACCELERATION OF PARTICLES BUNCHES
UP TO SUPERLUMINAL VELOCITIES

As we mentioned earlier, it is possible to reagftlispeed by electromag-
netic action. And how to surpass it? For this ibwygh to create the installations,
so that the particle was accelerated by the obydtich moves relatively the in-
stallation with velocityu in a direction of a particle acceleration [55, 11%8].
Then the particle can be sped up by this objedbigpeed:; relatively it, and the
absolute velocity of a particle, i.e. its velocitglatively the installation, will be
equal to a sum of speedand velocityu of the object:

Va=Ci+ U
1
n ar W
v v v+ ov v

Fig. 10.6is applied. Superluminal acceleration at attractipposite of charged bunches:
1, 2 - number of bunches; I, 11, lll, IV - numbefrmpsitions.

Such objects can be bunches of charged partiatethe beginning the both
bunch are accelerated by independent accelerdtays 10.6, position I) up to
identical velocityo. Then, bunches begin to be attracted to each.odsahe mass
of a bunch2 is more significant than mass of a burighonly the velocity of a
bunchl varies, it accelerates (position Il). As showrposition I, the initial dis-
tancel between bunches decreasesirand the velocity of an accelerated bunch
will increase ondv. After approaching bunches (position Il) the decsted bunch
1 increases velocity;. In this position to an accelerating burtis acted by the

189



external actionF, due to which it is withdrawn from a path of arcelerated
bunchl. During the interaction at a divergence of buncthesinitial increase of

velocity u; will decrease up ta. Thus, after the process of acceleration, the bunc

1 will have full velocityo + u.

It is possible to take a bunch of charged pasickhich are created, for ex-
ample, in modern accelerators, as a fast moviniggobject. Such bunch witR
particles, each chargg will have a full chargeQ, = gN. If the bunch with a
chargeQ,; (see Fig. 10.6) will move after an acting buncthvéi charge&,, of an
opposite sign, it will gain a relative velocitly which can be defined by expression
(7.46). For this purpose we we consider bunchepoasts. We take an acting
bunch with mas#l,, which is significantly greater than magds of an accelerated
bunch. Then the diminution of an acting bunch caméglected. The bunch will
be accelerated until it comes nearer to an actumctn. Considering a distance
between as their centres at the given moment @équbk diameted of the great-
est of them and considering the bunches of pragodselectrons with a charge of
particlesq, a relative velocity of an accelerated bunchgat 0 will be the follow-

ing

29°N
U2 =c? - clexg - 2|, (10.26)
m,c’d

HereN, is a number of particles of an acting buneh,is a mass of one particle
from an accelerated bunch; the acceleration is nmadedia withe == 1.

It follows from expression (10.26), that the burndlelectrons can be sped up
by a bunch of protons with the values of the omier 2 sm and with number of
particlesN,> 4-10% up to velocityu, = 0.%. Up to the same velocity the bunch of
protons can be sped up by a bunch of electrons mithber of particledN, >
6.2:16" Thus mass of a bunch of protons mustvie= mN; < Nm,, i.e. the
number of particles in a bunch of protd¥is< N, my/m,.

As in modern accelerators it is possible to reze¢he bunches of particles
with velocity, very close to speed of light, afscelerating a moving bunch, the
accelerated particles will receive velocity relativthe installation

va=c+0.3 =13,

which considerably exceeds the speed of light. &foee, even if the vacuum is
not very high in the installation, braking partilat the expense of superluminal
radiation (so-called Cerenkov radiation) will neduce this velocity up to sub-
lightspeed.

After the accelerated bunch reaches an actinghyuhaill begin to antici-

pate it and decelerate. The further interactionvbeh bunches must be prevented.

It can be executed in several ways. If to act onches by a magnet, the acting
bunch will deviate and to leave a path of motiomodelerated bunch.
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Fig. 10.7 The superluminal acceleration at the repulsioagqfally charged bunches: 1, 2 -
number of bunches; I, Il, 1ll - number of positions

Thus the vector of magnetic intensilj must be perpendicular to the velocity of
bunches. The calculations show that the delay aicaelerated bunch will be the
less, than more value of the magnetic intensitycdse of acceleration of a proton
bunch electron, the small strength must be, asnides of electrons of an interact-
ing bunch, injected from acceleration, is very dmal acceleration by a proton
bunch, it is necessary to apply much stronger ntégaetion to stop the accelera-
tion. The calculations show, the strength=180 kG, widely used in accelerators,
is quite sufficient for it.

It is possible to dilute the bunches after apphnolg electrical action, per-
pendicular velocity of bunches. It is possible pplsg both magnetic, and electrical
action simultaneously.

In considered example the bunches had the oppokigeges. At equal
charges the process of acceleration will happefolasvs (Fig. 10.7.). In basis |
the accelerated bunchgéshas the velocity smaller than the velocities duach2
on valuedv. Value & and the initial distanckbetween bunches is selected so that
at approach to a minimum distance, their relatietoesity was equalled to zero
(position 1I). Further at the expense of repuldwees the acceleration of a bunch
1 and, after going out of a bunéhboundaries, the accelerated bunch will have
velocity» + u.

As well as in the previous case, at technicalgsiiele density of bunches the
relative velocityu = 0, can be reached. At initial velocity= c andd» = u the
accelerated bunch in a position Il will have velpei; = ¢, and its final velocity
will make o, = 1,%, i.e. will be superluminal. In this way, at aceal®on of elec-
trons the accelerating bunch of electrons must Mave4-132 of particles, and at
acceleration of protorld > 6,2-13* of protons in a bunch.

So, the bunches with a number of particles or@#10" are necessary for
obtaining superluminal electrons, and for accelenabf protons must be the
bunches with a number of particles ordet*400". At this number of particles the
bunches must have the valued@ sm.

Such proton bunches are obtained in many largeemodccelerators. It is
affirmed in [1], that the number of particles op@ton synchrotron reaches 240
in a pulse. Moreover, it is planned to increaseniiaber of particles in a pulse up
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to 5-10°. Still, lots of protons have bunches, obtaineddoumulative rings. In [2]

it was planned to receive up to 4*46f protons in a bunch. Therefore, in any such
accelerator it is possible to accelerate electigmso the superluminal velocity,
and it is possible to reach even greater velotlign 1.8.

Acceleration of protons up to superluminal veliesitneeds a number of par-
ticles in a bunch on two orders more, than at @catbn of electrons. As the mass
of electrons is in 2000 times less than the magwabns, they have stronger re-
pulse; therefore is difficult to reach a large dinef electrons in a bunch. How-
ever, a necessary bunches of electrons can beattias rings. Such rings have
received some contributors. According to [22], éhectron rings with the number
of particles 6-1% are obtained.

Sarantsev [46] has received the rings with nurobetectrons 18. The val-
ues of rings can be less than 1 mm; thereforepibssible to accelerate protons up
to superluminal velocity by them. According to Sasev statement, there are a
number of capabilities to obtain the rings with #iees 16 + 10* sm. By such
bunches it is possible to velocity up the protopsauvelocity greater than k&3

The activities on obtaining electron bunches witien large number of elec-
trons were conducted. Hodataev [68] anticipatedapability of obtaining the
small bunches with 4-1of electrons. As it was given in [28], in our coynthe
bunches with 2.5-100of electrons were obtained. Thus, at teleologicaation of
electron bunches it is possible to reach a necgsEansity of particles in them to
have a capability to accelerate protons up to vigldc3c and more.

10.4. MULTISTAGE ACCELERATORS OF
SUPERLUMINAL PARTICLES

With the help of the ways, considered above onechiwcan give the other,
relatively itself, a velocity not larger thapn To receive these bunches in accelera-
tors it is possible with velocity not greater than Therefore, a double speed of
light is the greatest velocity, up to which it isgsible to velocity up the particles
by an indicated way. By an explained below mulgstavay it is possible to sur-
pass and double the speed of light.

For obtaining protons with light speed the largeederators are required.
Some more large costs will require acceleratiomadvy ions up to light speed.
But if to accelerate the bunches protons or iontoupis velocity by electron, the
costs will considerably decrease. By electrons htincl0* + 10™ particles and
speedc it is possible to speed up to light using the soheshown in Fig. 10.6
velocity a proton bunch with initial velocity 0.7¢n position | in this case,
bunches have different velocities and are locasehiach closer to each other, i.e.
I is minimum.

As the relative velocity of a proton bunch at tieginning is negative =
0,7c —c = - 0,3, it will remove, until it reaches a relative veitycu = 0, and in
relation to the installation, its velocity will e Then it will begin to come nearer
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to an electron bunch and it velocity relatively thstallation will become equal to
1.3c. Such acceleration is possible, if we can redheebunches at the minimum
distancd = d at the beginning.

The superluminal proton bunch can be acceleratsdg the scheme of Fig.
10.5 further in the same way, but other electromchuwith velocitys = c. In this
case at the beginning of acceleration by the psoteiti have velocity relatively
electronsuy = 1.3c — ¢ = 0.%. After a proton bunch approaching the electroa, th
relative velocity of the first one, as it followsofm (7.46), will beuy -0.412Z. That
is, after the second stage of acceleration, théoprbunch will have velocity
1.412c. The given bunch can be accelerated byrefegtith light speed and fur-
ther, but each time the incremental velocity wétdease.

At all stages of the acceleration it is possildaise electron bunches from
the same accelerator, transmitted in differentaimst At a multistage way it is
possible to use electron bunches and with smailéne order by number of parti-
cles, for example 6+ 10", but then the greater number of stages is required
prefer the intensity of a bunch to the number afies or on the contrary, it is pos-
sible, comparing the costs of creation of thestlladions.

Such multistage way of acceleration allows acegiley the particles up to
velocity Z and more. With this purpose it is necessary teiveca superluminal
bunch of electrons and superluminal bunch of ptand then again to use them
for accelerating each other. And if the velocitybainches was 1c5then at the
message of accelerated relative velocitycQit3 velocity relatively the installation
will be 1.8 c. After the second stage of such acceleration litreteive velocity
1.912c etc.

10.5. ACCELERATION OF SINGLE PARTICLES
UP TO SUPERLUMINAL VELOCITIES

We will consider the collision acceleration of atiy of charged particles.
Let proton with velocityg in infinity (Fig. 10.8) direct on a motionless |tosn.
Then, relatively the proton the positron has vélogj, = v at the direction of a
proton, i.e. it comes nearer to the proton and dsaks velocity, according to
(7.46), will be written so:

21 1
=¢ [1-(1- pd)exp| =L = -—1||. 10.27
Vrel 01\/ (1- Bo) p[cf (R Roﬂ ( )
Approaching on the least distanBg,, (Fig. 10.9) relative velocities will
become equal to zero. From (10.27) we will deftyg,, substitutingy ¢y = Ou Ry

— 0.
2u
Ry =—‘(—). (10.28)
min 012 In 1_ﬁg
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Thus, the mass of a proten, is significantly more than the mass of a positron
My, and its velocity will not vary, i.ex, = ve. The same velocity also will have
positron at the point of approach.

Vo
@ @ Vo Va
Pratan Pasitron @ @
Ry—CO Rm]-n
k 1

Fig. 10.8.A beginning of acceleration stagefFig. 10.9.A mean acceleration stage.

After approaching a minimum distance the positbegins removing from a
proton (Fig. 10.10). Its velocity at removing infinity will be defined from
(10.27) ato =0 R— w andR, = Ryn in the following kind:

Ro Ure| = Do. (19)2
Therefore a full velocity of a positron will be

Dpo = Vg + rel = 20g.
Let's calculate the initial velocity of a protonhieh allows particles to be pulled
together at a distance, equal to a sum of radiocagroton and the positrdfi,,
= Rprt Rpe. From (10.28) it is followed

Bo= [1-exp— 2t = J1-expa,, | (10.30)
G (Rpr + I:zpo)

where

2
2 2¢ (10.31)

cf (Rpr + RpO) i Clzmpo(Rpr + RpO).

Ap =-

Fig. 10.10 The end of - . _

acceleration stage. |_ Ve 1Y
|@ — = — @ —

After a substitution
of parameters we obtair.
a, = -1.34, and the initial velocity of a protgh= 0,859. At this velocity of pro-
ton action on a positron, the last will be speda,, = 2 4 = 1.72c, i.e. we have
superluminal positrons. If the velocity of a protafil be more than 0.8%9 the
particles will be pulled together at a distanceakden than the sums of their radi-
uses, therefore, their further interaction will et determined by normalised ra-
tios. Let's note, that by this way it is possiblgoao accelerate electrons by anti-
protons.

Considered acceleration can be executed, bomigabyira bundle of heavy
particles a slowly moving cloud of easy particl€he probability of direct colli-
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sion will depend on a density of ensembles of thms#icles. Further it is neces-
sary to separate the superluminal particles fraarhravy sub-lightspeed particles.
The last must be rejected by a transversal electgoetic action. After rejecting
devices along an axis of the installation, onlyshperluminal particles will move.
They can be detected with Cerenkov radiation. Utideranalysis collision of re-
sults it is possible to define a probable densftyparticles angular distribution,
which will characterize the availability of superiinal particles. Thus, the pa-
rameters of trajectories normalised in Appendix][%hd also in the work [60]
can be used.

We have considered the collision accelerationgoidly of charged particles.
By the same way it is possible to accelerate theosite charged particles, for
example bombarding by protons a cloud of electritnis, possible to accelerate
the last one up to the superluminal velocity. Hoerevt is possible in particular
conditions, which emerge at the analysis of trajees, shown in chapter 5. A
proton with velocityog = 0.67%, directed to an electron with an aim distaace
1.2¢10% sm (the Fig. 10.11), will seize it into hyperbelike trajectory round
itself, on which the electron will be wrapped upimd a proton for a period at 360
(see trajectory 1.1.3.7 on one seconds 193 ofdb®pjectory7 in a Fig. 5.1).

At stage | a proton with velocity (see Fig. 10.11) fly on an electron with an
aim distancea. At stage Il the motion of an electron relativelyproton is shown.
Having initial velocity in infinity (—vo), it goes round a proton along a hyperbola-
like trajectory, approaching at the pericentreshat distanceR, = 0.9 10 sm.
Then along the lower branch moves into infinityhwielocity oy relatively a pro-
ton. At stage lll the velocities of particles rélaty the installation after interac-
tion are presented. The electron moves at thetatireof a proton motion and has
the superluminal velocityud = 1.34.

The process of acceleration happens within thédiof a distance IDsm,
i.e. practically at a point, therefore, the lengftthe installation will not be large.
However, the electrons must be free, as the elestrmonnected by other interac-
tion, will not create necessary situations for slymeinal acceleration: at bom-

bardment by protons of
atoms their electrons can
not be sped up to the super-

I I I
L luminal veloci
a ) 0y uminal velocity.
Do (@ ® 20 Fig. 10.11 Stages of accelera-
" 0 . > i
s OJ o tion at collision are the oppo

sitely charged bodies.

a o
Fig. 10.12 Acceleration of electrons at % o \b
bombardment by protons of an electron O o @"JWC
ensemble:a - before collision;b - during p*@ - e O
collision. © o CUL
O 5 @
For a realization of this way by a G{{KC
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bundle of monofast-track protons it is possibldtanbard a cloud of motionless
free electrons (Fig. 10.13). Because of different aim distances, the diffeteas
jectories of electrons (see Fig. 10.12,will be received, from which the light
speed has only electrons, moving in the directibprotons bundle motion. All
static characteristics of process of acceleratamlme calculated, if the density of
particles ensembles is known.

It is necessary to note, that the trajectory afetaration will slightly differ
from trajectory7 in Fig. 5.1. Let’s consider the results of caltiglas on searching
trajectory, which will lead to the greatest superial velocity:

m ﬂp ﬁox ¢a

-0.25 ( 0.96 | -0.617 | 2.45
-0.28 | 0.958 [ -0.743 | 3.09
-0.3 [ 0.951 ] -0.704 | 3.11

Here [ is a component of normalised velocity in the ditof the axi in Fig.
5.1, andg, is an angular halfcycle in radians. How it is sester the acceleration,
shown in the scheme shown in Fig. 10.11 velocitiea particle can reach =
25.xc =1.5c of the light speed. However, the parameters cfedheajectories are in
narrow limits. The minor change of parameters cddisiation of electrons in a
perpendicular direction to a line of motion, or aisifion by their proton, or devia-
tion in the necessary direction, but with smalloedly.

10.6. PERSPECTIVE OF APPLICATION
SUPERLUMINAL MOTIONS

The space particles generate broad showers of etargeparticles, which
simultaneously cover large territories on a surfaicthe Earth. Maybe, this abun-
dance of particles is created by one superlumiaalighe. This property can be
used for further space communication. The smalhtjyaof superluminal parti-
cles can be directed to the other planet of a Sylstem or even to a planet of the
other star. Such particles will not be dispersedlarly to radio waves or light and
to lose the intensity. At the entrance in the ahese of a planet they will create
showers of particles, which will be fixed on langistances from an aiming point.
Probability of a gross error of a transmitted sigharefore decreases. The infor-
mation, thus, will be contained in temporary inssvbetween transmitted super-
luminal particles. Apparently, the communication dfysuperluminal particles is
the most energetically expedient.

The debris of the kernels and a variety of eleamgnparticles observed in
broad atmospheric showers, testify, that the supenal particles can effectively
destroy substance. Therefore, the bundle of supéral particles of certain inten-
sity can be a more effective weapon, than a laserSuch bundle of superluminal
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particles can be used for dividing into parts & #steroid, approaching the Earth.
After falling on Jupiter in 1995 of Levi-Shumekhmymet fragments, the problem
of antiasteroidal protection of the Earth was maliby the mankind. And the su-
perluminal particles here can be used in differgays. Except effective "knife"
the bundle of superluminal particles can be appited carving of asteroids into
parts for a distant location of asteroids. The dup&nal particles, modulated on
time, after collision with asteroid will beat outpart of particles with opposite
directional velocity, which, entering the atmosgher the Earth, will create the
showers of atmospheric particles. As the resulthefr filing, the distance up to
asteroid, and also its other parameters will berd@hed.

The other way of antiasteroidal protection is ¢hange of asteroid trajectory
by jet . As it is seen from Tsiolkovsky's formulaX0), the more the speed of jet,
the less fuel is required and the less the energeti material inputs. At superlu-
minal velocity of jet the efficiency of a jet engilis the greatest.

Jet superluminal drivers are the unique means;whill allow the person to
visit the planets of other stars. August 12-14, 7199 American astronautical
associations conducted working conference (Breaktyit Propulsion Phisics
Workshop) on searching the strategy of researatigish will allow the person to
create the drivers for intersidereal travellingbeTanalysis of materials of this
conference has shown, that there is no an altemttijet superluminal driver.

We will consider the flight of the spacecraft withch driver up to the near-
est star situating at the distarice 3 | y. (of light years). Let's make the flighitkv
earth acceleratiog. For a year of flightt; = 1 year, the spacecraft will set up light
speed

v =gth=cC (3)
also will pass a distance
l, = gt?/2 = 050y, = 05c.r. (10.33)

According to Tsiolkovsky's formula (7.10), the mas the spacecraft will de-
crease at the expense of a jet with light speed:

m, = mpexpto/u)= myle, (10.34)
wheree = 2.73 is the basis of a natural logarithm. THea spacecraft during =
to 2 years moves with velocity= c at inertia, also passes the distahce 2 | y.,
then duringt; = 0.5 years turns an engine against motion aralwhithe velocity
up to zero. For this time it passes, accordind ®33), the stayed distanlze= 0.5
y. and its mass decreases up to

m, = my exp(-v/u) = myexp(-2o/u) = my /€. (10.35)

Thus, the spacecraft for 4 years can reach arstagved from the Earth at 3 light
years. Making a return path in the same three stabe acceleration 0.5 years,
flight at inertia 2 years, braking 0.5 years - ggaaft returning to the Earth, will

have, according to (10.35) the mass

mg = My exp(-20/u) = my exp(-4o/u) = my /e, (10.36)
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i.e. a useful mass from the initial mass of thecepeaft will makemg = 0.018n,.

It is quite real ratio, which allows agreeing iml@sign of the spacecraft energetic
needs and technical feasibilities. For a comparisenwill consider a returned
mass of the spacecraft at usual propulsion jet véthcityu ~ km / s, i.eu = 10°

c. According to (10.36)n, = mg exp(4+106). This astronomical number for initial
mass of the spacecrafi testifies, that it is impossible to reach the eetstars in
another way.

We have considered an example of travelling tontb@rest star with accel-
erationg. The whole "road" has taken 8 years.oAt c the flight time will be re-
duced, i.e. for this time it is possible to mak#ight up to the farther stars. The
normalised ways of acceleration of particles ughtosuperluminal velocity can be
used for a superluminal jet driver, schematicatigven in Fig. 10.13. It consists of
two accelerating devices for heavy particless for protonsPr); 2 is for antipro-
tons @Pr) and two rejecting devices is for antiprotons and is for protons.
These devices provide circulation of heavy parsictea planexy on two circuts:
in circut | - protons; in circut Il - antiprotoni devicesl and2 heavy particles
are introduced in turn with velocity on an axial line ok jet drivers. In rejecting
devices these particles are injected from an dixial in an circut | - protons are
injected and in circut Il antiprotons are injected.

:__ 3]
| |
| aPr | /_\U”>c

)

e | | e
: | Pr |
| T p
_ >~ _1 L~ 4]

Pr - proton

[~ 5 aPr - antiproton
z | | Ppo - positron
| | e -electron
~ V- Fig. 10.13. The scheme of the jet
| x propulsion driver with superlumin-
| al jet of accelerated particles.
|
L= 6

In perpendicular to a delineation of a plane (segtionA-A, planex? two
circuts of an ejection and acceleration of easyigles are locateds - for elec-
trons €), 6 - for positrons [fo). These devices in turn with velocity - dv intro-
duce easy particles on an axial linexgét drivers.
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On the axial linex the collision acceleration equally charged pagtichap-
pens, it is considered in item 10.3 and 10.5. Iefahand part (Fig. 10.13) the
initial stage of acceleration of an electron byaatiproton is shown. As the speed
of injection of an electron is less than the vdlpoif an antiproton, the antiproton
catches up with it. Thus the velocity of an electgoows.

At the moment of approach the velocity of an elmttwill become equal to,
then the electron will begin removing from an argipn, and its velocity will
increase. In a mean part of a driver the momeumtppfoach is shown at the inter-
action of a proton and positron, and in a right memwe show a completing
phase of interaction of an antiproton with an etatt The antiproton by the reject-
ing device3 returns in a circulating circut 1l, and the superinal electron con-
tinues motion along the axis Thus happens, therefore the driver remains &lectr
cally of the neutral. Due to the symmetry of desitiee torques are not created in
it. At o = 0.85% the speed of jet, as shown in item 10.5, will lpea to 1.72
speed of light.

We have considered the acceleration of singleighest however, this
scheme is applicable for bunches of particles, Tds, the condition should be
executed, than the accelerating bunches had mass than the mass of acceler-
ated bunches.

The perspectives of using the superluminal padiere not limited by men-
tioned examples. As any new phenomenon, they véllehexotic properties,
which will present new technological capabilitieshe people.

CHAPTER 11

GRAVITATIONAL INTERACTIONS
11.1. VELOCITY OF GRAVITY PROPAGATION

All bodies in the world around are attracted toheather. All subjects drop
on the surface of the Earth, being attracted taétstre. The Moon, due to the
Earth attraction, twins round it and is not fly amfeom the Earth. The sun attracts
the Earth, and it moves round it. In the circunasapace due to the attraction of
the Sun the planets, asteroids and other bodieg;nmototal they represent a lens-
shaped structure, which exists due to the grasitafi he stars with their planetary
systems are attracted to each other and form ssmsgciations and accumula-
tions, which due to mutual attraction form galaxiedich also due to attraction
are integrated in metagalaxies. So, the gravitadicis on huge distances, there-
fore, a title "the world law of gravitation" is daijustified for expression of force
interactions of two bodies

F = .cMmR

= (11.1)
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which masses anme, andm,. I. Newton has introduced the law (11.1) on theeba
of analysis and generalization of observable gasieihal interactions. The gravi-
tational constanG was determined due to G. Cavendish experimen7881The
becoming of the law (11.1) was stipulated by adaagtivity of many scientists at
calculation of celestial bodies motions.

The acceleration is a direct expression of actiogrefore, the latter, as it has
already been noted earlier, is possible to desaniitleout application of force.
Probably, such description will be easier and tdloccasions for erroneous con-
clusions less. One of them, following from a foroethod of gravity description,
consists in searching the reason of gravity. Itvesg if there is a force of action
on a body, there must be a subject, which apgliésmust be directly adjoined to
the body and influence on it. There were suggeseidus kinds of such subjects,
for example, the particles of ether, which are Imed by a gravitating body, and
this flow tightens the attracted body. Notwithstimgdwhat, mechanisms of action
are thought out till now, any of them is not cajeatal give consistent treatment of
gravitation.

This is one direction of mechanisms searchingaatsiange action of gravi-
tation. The other one consists in a field repres@nt of gravitation. By analogy
to an electromagnetic field the gravitational fiesddsupposed. Here the illusion of
a short-range action is created by the mathemadtitades, for example, the gra-
dient of a potential creates a force. But the ptalsnechanisms at a level of ab-
straction have already become customary, so tleafield direction freely devel-
oped, until a geometric explanation of gravitataana curvature of space-time was
introduced in the GTR.

In a field explanation of gravitation by analogy dn electromagnetic field
there appeared a question about the velocity oftgrpropagation. The motion of
the Moon round the Earth, the motion of the Eartth planets at the close analysis
has appeared a little bit distinguished from the&ults of solving the problem of
two bodies interaction. To explain the differeneelt of hypothesises were put
forward, including the new laws of world gravitatidOne of them is connected to
speed of gravitation propagation, equal to the dmddight. However, the scien-
tists, taking into account the action of other lesddf a solar system and attracting
singularities of the form of a main body, have exptd these differences. Thus,
the law (11.1) became more and more justified wibh new explanation.

It is necessary to note here, that in 1787 Lapiadbe work "an Account of
a system of the world", and also in "Treatise arekestial mechanics" [99] from
the analysis of the Moon motion came to a conchydioat if the speed of gravita-
tion is final, it must exceed the speed of lightLBO million times. Nevertheless,
the hypothesis about light speed of gravitatioerafards was put forward many
times. It had got the greatest actuality at comatiten the precession of planets
perihelions.

According to the law (11.1), a closed orbit isallipse (see formula (5.3)),
and there is no pericentre in the precession. Apthcessions were observed, the
scientists, including I. Newton, selected the nawd of gravitation, which would
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allow taking into account the precession. U. Lerier[45] used one of the par-
ticular cases of the law, offered by a I. Newtanthie following way:
F=-c™® .5 (11.2)
R
wherems is a mass of the Sumis a mass of Mercury, anél is a revolting force,
which expresses the action of remaining planets.
In 1859 U. Le Verrier, according to N.T. Rousvés], presented in his work

[101], calculated Mercury perihelion advance actaydo (11.2), and planets con-
tribution in it:

Planet The contribu-| The contribu-
tion on [45] tion on [50]

Venus 280.6' 277.856
The Earth 83.6' 90.038
Mars 2.6 2.536'
The Jove 152.6' 153.584
Saturn 7.2 7.302
Uranus 0.1" 0.141
Neptune 0.042
Oblateness of the Sun 0.010
All for one century 526.7 531.509

It is affirmed in the references from GTR, that tadculated~ 530" per one
century differs on~ 40" from a really observable perihelion advance, whiglie
is not given. It is necessary to note, that theatiance of calculation id3", in
view of an extremely small precession of a perdrel{it is considered for 100
earth years, i.e. for 415 of Mercurial years), imther good prognosis. Secondly,
this result is obtained at the solution of an agpnate problem (11.2), instead of
exact one, when to each celestial body the for¢eonty from the Sun, but also
from each of the planets is applied. That is, theblem of many bodies is not
decided in full volume. Thirdly, the parametersaifacting bodies such as a mass,
a position on trajectories and the parametersajédtories are known with insuf-
ficient accuracy, to hope for the best coincideenen at the solution of a problem
of many bodies. In fourth, there are many othetoiac the action of huge quantity
of unobservable small bodies, the form of the Surgum-solar substance etc.,
which can essentially affect on the rotation of Mey perihelion. Despite of it,
many scientists put forward the various hypothétenas of gravitation for expla-
nation of anomality (i.e. misalignmerd3") of Mercury perihelion advance. One
of them is the light speed propagation of grawitatiDifferent authors offered a
number of ratios for gravity, which depends on eéjoof motion and accelera-
tion that is stipulated by a final speed of propigeaof gravitation. It is Weber's
force (2.11) and the onessimilar to it. Apparenthg greatest value of them has
the force [45]
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deduced by Gerber and published in 1898 [91]. &srésult of solving the prob-
lem of two bodies with force (11.3) he received tbkowing expression for a

perihelion advance:

3 = 24 1°a2
T T2?1-¢2)

which for Mercury is equal to 41per one century. The expression (11.4) was
known to Mach [36] and A. Einstein [88] and was eliddiscussed in 1916 -
1917 [45]. In 1915 A. Einstein introduced the exgsien (11.4), taking into ac-
count a general theory of relativity [76].

Both Gerber formula (11.3), and GTR method areetbasn a hypothesis
about speed of gravitation, equal to the speedgbf.|Notwithstanding that the
obtained displacement (11.4) is close to a caledlanomaly of Mercury perihe-
lion in 39', it cannot be considered as a proof, and, furtbeemas a proof of light
speed of gravitation. At first, the existence of #tinomaly, as we have already
mentioned, is stipulated by approximate characfea @roblem solution. Sec-
ondly, the registration of the gravitation ligheggl has given a perihelion advance
41", and the value 527" + 39" = 566", which is &we rder larger, is observed.
There are no proofs that, the light speed of gatieih improves the result. The
value 41" is calculated for a problem of two bodiest's imagine, that the prob-
lem of many bodies was decided because of the fagvawitation (11.1), and it
gave the result of a perihelion advance 527" percantury. Then the problem of
many bodies was decided because of the law of tgtan with light speed of
propagation, and the result of displacement 5241"*= 568" was obtained. Then
it would be possible to assert, that the light spekegravitation considerably im-
proves the results. As these problems were notlddcthe supposition about light
speed of gravitation is deprived of any basis.

As we have already noted, in a General Theoryalatrity the light speed
of gravitation was entered with the purpose of tio@aof a unified field theory.
The expression (11.4) was one of the main proof& DR validity. The second
proof has become a curvature of a ray of light ipgssear the Sun, and the third
one was decreasing of frequency of light at itsaeimg from the attracting centre.
As to deviation of a ray, how we repeatedly showed chapter 5 and 9, at light
speed of body the action propagated with the sgmeds leaves trajectory of a
body unbent. Here the situation is identical tataasion with a «black hole» and
is expressed in the table in item 9.1. The cuneatiira ray of light is only possible
in the case, when the light consists of energetitiges and the speed of gravita-
tion is infinite.

During Venus passing along the disk of the Suri761 Lomonosov ob-
served a swelling of the Sun edging at Venus degaftom the disk: "When Ve-
nus came forward from the Sun, its front edge becapproaching the Sun edge

(11.4)
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and... it was about the tenth part of Venus's diamat&nob appeared on the Sun
edge. This shows a refraction of solar rays in \d&natmosphere" [31]. Visible
for an eye the refraction must have value abowdgrak. Not smaller refraction of
rays must be in the Sun atmosphere. In this coiumebbw to estimate the devia-
tion, confirmed by the observations of a ray ohtigAg = 1.75" [26] due to a
gravitational field of the Sun?

The reddening of light at its removing from a stapossible, if the light is
not an action, but there is some substation, whachmass, by means of which the
star will decelerate the motion of light and chaitdeequency. Such properties of
light are not revealed. There is no also reddeointight. Light spread between
the points with the gravitational potentials and @, according to [26], changes
the frequency on value

Af = f(@, - @,)Ic? . (11.5)
Gravitational potential on a surface of a sftar= - Gm/R,, and at a viewpoin®,

- 0. Then the light which is radiated by a star vk frequency, will be ob-
served with frequency, reduced by a value

Ry
Af =-f . 1(®)
2R,

For a neutron star its radii® comes nearer to a gravitational radRysand
Af = f/2. As the expression (11.5) is approximate andairsfér a weak field (for
strong fields (11.6) should é = —f R, /R;), there must be an even more essential
change of frequency. In a limit & = R, the frequency of light tends to zero.
However opened in XX v. white dwarfs, neutron standidates in the «black
holes» do not give such a change of frequency.€fbes, "the experimental con-
firmations" of three effects in GTR remain on cdeece of the scientists, de-
clared them. For every scientist they must be aalisxample of the responsibility
for the results, presented to a society.

The fourth GTR effect deals with gravitational wav They also are a corol-
lary of light speed of gravitation. Begun by marmjestists in the second half of
20-th centuries, the activity on searching graiagtal waves were finished with-
out any result. The gravitational waves are no¢cted.

We will note, that the observable perihelion aseanf Mercury in different
sources is represented by different values. Fomple in the review of magazine
" News AS of Byelorussia " on D.V.Tal'kovsky's pajieis informed: "The ob-
servable precession of Mercury perihelion make9558® per one century; due to
the influence of no-sphericity of the Sun, disturtx@s from planets and other fac-
tors the astronomers managed to explain 5557.1@" fthis value within the
framework of Newton's theory of gravitation. Theveligence on 43" per one cen-
tury made a large problem for a theoretical astnoycand its explanation by Ein-
stein in GTR frameworks become the triumph of titeel”. Here observable value
is in 10 times more than the former. The offsetigadf the same order on the ba-
sis of comparing the orbits of Mercury in 1850 d9%0 is given in the work [21]:

" This effect is so small, that for hundred yedrs perihelion of Mercury turns
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only on r3320" (5600"), as shown in Fig. 5.3 (see [21])orRrthis observable
full turn the theory of Newton can explain only then on 1°33'37" (5557") for
one century. There is an excessive motion of ehpkoin 43 seconds of an arc for
one century... which Einstein received for the gitjoof precession exactly 43"
for one century that is just that value, which wwas$ explained by Newton theory.

So, the observable offset value is equal to 5@0"one century, instead of
566". The value of observable displacement 560@oigirmed also in the third
source [64]. Then it follows, that the displacemeraticulated in Newton theory,
makes 5557" per one century, instead of 526.7" 3.5, as shown by two
sources in the above-stated table. Nevertheleggaretion of a divergence be-
tween observation and calculation in 41" or 43" b@some a triumph of a relativ-
ity theory. As modern Physics is constructed on ithlativity theory, above-
mentioned "triumph" is a testimony of a steep ptysiisis in the XX century.

The shown analysis testifies, that there are wofprof light speed of gravi-
tation. Therefore, the problem on speed of propagadf gravitational action re-
mains opened. How we have shown in ch.5, for intaras spread with limited
speed an angular halfcycle of final trajectoriegig 77 i.e. the pericentre of the
orbit will displace in space. We solved this prablat a large velocity of bodies.
Further we will consider it at small velocitiestoddies motion.

A small displacement of the orbit parameters désteal bodies that is rota-
tion of the pericentre, the change of its lengtleglination of the orbital plane and
its rotation in space, represents a special intéres a position of existence and
development of a solar system, the history of theglEand a change of its climate.
Put forward in 1864 by J. Croll and developed byMé&lankovitch the astronomi-
cal theory of approach of ice ages finds broad stppf many scientists [18]. If
the gravitation has a final speed of propagatidria@e temporary periods this
property can affect on the rotation of a perihelidrour planet. The change of an
eccentricity and declination of a plane of its biisi stipulated by the action of
other planets. Actually there is a problem of mawgies, which will be further
considered.

11.2. PRECESSION OF MERCURY PERIHELION

For determination of real precession of Mercuryilgdion the analyses of
many centuries observations of a planet is necgseasystem of coordinates,
which, in turn, is subject to changes due to seq#aturbations of an orbit of the
Earth and movement of Solar system. Thereforerebelt depends on the method
of data processing observation. The laws of chantlie planets perihelion (see,
for example, Astronomical year-book in 1949), aasdd on S. Newcomb’s theory
(1835 - 1909) which for first three ones look like following:

Mercury - 75°535891" +559976"T + 1061'T 2 ;
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Venus -130'09'49.8" +506899"T — 3515'T?;

Earth -101'13'15" +618903'T +1.63'T? + 0012'T3,
whereT is time in centuries, counted from epoch 1900 yw& can see from here,
a linear component of precessions Mercury is emqu8b9976" per one century.

Now we will consider what contribution to precesscan give the registra-
tion of gravitation propagation speed at interattid two bodies. As it was shown
in chapter 4, it follows from an electrodynamidsattat interactions dependent on
velocity of relative motion of two objects, the deris determined by expression
(4.58). From d'Alembert’s solution (3.28) it follewthat such an action is spread
with a final speed. The conjectured earlier lawgtdraction, for example (2.11),
(2.12), (11.3) etc., were based on different hypsiges. In special and General
Theory of Relativity the description of interactgymotwithstanding that it is ex-
pressed as a change of spatially - temporary paeaspés constructed on relations
of electrodynamics, and, as we have already showiteim 4.6, the relativistic
problem of two bodies (4.90) is reduced to our &qua of trajectory (4.80),
(4.82). Therefore, the latter represents a presosgtion of a problem of two bod-
ies, which interaction is spread with final speed.

The results of integrating equations (4.80), (1.83 it was already noted,
almost for 100 trajectories are submitted in thekof®9], and the periods of orbits
and radiuses of their apocentres for final trajeetoare given in Appendix 5. In
Fig. 5.5 these trajectories are represented at- 0.7. At velocity at the pericen-
tres, making 0.1 from the speed of ligh§ € 0.1), for one period the pericentre of

orbit displaces od¢;° = 2(g, — 7) = 0.8. With increase of velocity, the offset
value of the pericentre for trajectori@s 3, 4receives value®g;" = 9°; 35°;
296.2° accordingly. At a limiting velocity3,. = 0.714 the displacement of the
pericentre aims to infinity. As it was mentionedlies, in this case the attracting
centre into a circular orbit seizes a particle. igside with grovvthd'¢T at the
increase of velocity the radius of apocenRe = 2482 decreases toR, =1.
In Fig. 11.1 we represent the change of relatemop of orbit @ , where
o =¢;12m, (11.7)
¢r =24, (11.8)

depending org, at different parameters of trajectorigs The verticals designate
the asymptotes, to which the curves rush reacHiadimiting velocity 5,.. At a

fixed a; the relative radius of apocentre with growth dbegy 3, decreases from
maximum value a3, = 0 up toR, = 1 atf3, = S, Therefore, a displacement of

pericentre tends to infinity at an asymptote, uthis case the orbit is a circle,
which has no a pericentre.
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How it is seen from Fig. 11.1, with increase ofaosolute valuey, the dis-
placement of pericentre is increased at the satoeityeat the pericentreg,. But
with increase ofa| the limiting value of velocity decreasgg, therefore there is
an optimum of displacement in area= - 0.7. For example, a; = - 0.7, the orbit
with a relative periodp; = 1.5 is possible,

i.e. for two periods the particle will make _ ) -0.9]-0.5]
three whole turnovers, and its two-period '~

-0

¥i
Fig. 11.1 Relative period of orbits 1.6 I I
(@t = @1/2m), depending on velocity at the I I

-0.6
pe_ric:entres@p at different parameters of trajeg 14 _('8// 7/ -0.5
tories a;. The vertical asymptotes have absci

f
S2S = s 12 /7/-}%’7Z
-0.' ‘q./ .
/

a, | 05 ]-06[ 07 |-08] -09 =
G, | 0.866| 0.8 | 0.714| 0.6 | 0.435 02 04 06 5

trajectory will be stabile in space. At relativeripd
P =1+1/k 1(2)

in space thé&-periodic trajectories will be stabile. In them {hrticle fork periods
will makek + 1 turnover, after which it again continues motan the same trajec-
tory. If §; = 2, the particle for one period will make twortavers. Its trajectory
will represent two close to a circle curves, enetbsne into the other and adjoin-
ing on a horizontal axis.

With increase ofa,| the radius of apocentre, as it is seen from Appebd
decreases fronR, — o ata =- 0.5 up toR, =1 ata = -1. With increase g8,

the radius of apocentre also decreases and corae= neR, = 1 atf3, = S

The motion of planets at the pericentres happesmall velocities. The ob-
servable parameters of planets are enumeratea ipatameters of their trajecto-
ries. At this stage the various algorithms of cidttan and various parameters of
trajectories are possible. We will base calculaiom the following data about
Mercury: the length of a semi-axasthe eccentricitye, , the period T, the distance

1 AU, the mass of the Sum. The parameter of trajectory according to (5.14),
through an eccentricity is determined so:

o= -1 + 1), 11(10)
and the radius of the apocentre pursuant to (5vilbhe
+
R, = a 2m, +1 . (11.11)
a
1
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As the velocity at the pericentresenters inay, it can be expressed through

the parameter of trajectory
G
by = ’WTS) (11.12)
p "

After a substitution in (11.12R, and a; we obtain a normalised velocity at the

pericentres
G 1+ ¢
B, = /(1”‘;— ()actj' (11.13)
- 1

Substituting numerical values of parameters, weadisr the following values for
Mercury orbit:a; = — 0.829/3, = 1.9610".

How it is visible from Fig. 11.1, at smaf}, < 0.3 the periods of trajectory
@1 come nearer to unit asymptotically, so it is ingbke the to evaluate value
@, at such smalf3,, which are inherent to Mercury. The numerical gnétion of
equations (4.80), (4.82) at such parameters ginesrar much more exceeding an
expected perihelio@d@; advance. In this connection we consider the apprate

solution of the trajectory equation at smajl Let's record an exponential multi-
plicand, included in radial velocity,

241\ R - T i
exp Il- hélll(cEZCle)}o's = expr“:’gt2 —eh, (11.14)
wherefy = Ry/R; B, =vZlct :hZ/(c;l2 RZ); A= £

\/1_ /Btz
As we consider the Sun, for if, << 1, and at smaj; valueA << 1. Therefore,

the exponential curve can be decomposed in Tayhursber:
2 A3 7 P2 [
e_A:1_A+A__i:1_ 9 + , 9 - g 1.5+
2 6 J-p2 20-8) el p2)
Decomposing denominators of addends in a right neenalmd limiting by the
terms of the second order, we obtain

R R2 BR’+R3/6 BR3 3B%R?
oA 1.9, 92 _BRy 39 + Ri + 59+ (11.15)
R 2R R 2R 8R
where
h2

B = . 11.16
(=) (11.16)

In (11.15) we limited by addends with exponent$ess than 6. Substituting
(11.15) in (4.80), with allowance for the addendhkich are not higher thaR® we
have
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DR 1 (DR?  R2 DE
—c 1-D+ —9 .+ 9+ L+ == 11.17
Ur C.I.\/ R R2 [ 2 C_LZJ R3 ( )
where
2
D= (1-,33) exp——t (11.18)
¢ |RZ-h?/c?
R h*R]
E= Y. 9% (11.19)
6 2 1
Substitutingy, in (4.82), the equation of trajectory will be todlowing:
¢=-ﬂj’ dy , (11.20)
¢ Y JF + My - Ny? + DEy?
where
21
F = 1-(1-ﬁ§)exp L : (11.21)
c¢? yRZ-h?/c?
M =DRy; (11.22)
DR?> h2
— g .
N = St (11.23)
y = JR. (22)

At £ — 0 factors have the following orddf:= 1;D = 1, Ry = 1/012; E=
1/c}; M=1/c?;N=h/c?; DE = 1/c; . Therefore, neglecting an addend wyth
G G G G

we can integrate the expression (11.20) in a baynctandition@(R,) = 0, i.e. the
angle is counted from the pericentre:
M -2N/R

-1 M ZN/RE
) VNG /h? JAFN +b? .

Expression (11.25) with allowance for the boundaogdition can be copied as

R = 2N . (11.26)

M +/4FN + bzcos(\/N cf/h2¢)

According to (11.26), ap = 0, the radius receives a minimum vaRie R;, and
the maximum valu® = R, will be at

R

arcsin

¢ (11.25)
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JINCZ/h2 ¢, = 1. (11.27)

As the full angular period is equal # = 2 ¢,, the displacement of the pericentre
for one period with allowance for (11.27) will be

5pr = ¢y -2m= 2 — 21| . (11.28)
JNGZ / h?
Using expansion (11.15), we will transform a radita
2t - B2 R R2
ch/h2=1+M1-_g+—gz. (11.29)
ci h R, 2R

With allowance for (11.29) the displacement of thexicentre for one turnover
(11.28) will be written so:

opr = -2ma? B2 (1—/32) 1-& + R—gz : (11.30)
T 1 p p Rp 2 RS
As a gravitational radius of planetsRg << R,, the influence of addends in the
second bracket is not essential, therefore, finatly3, << 1 a rotation of the
pericentre is obtained as
py = -2miB; . (11.31)
As is seen, the displacement of the pericentr@dé@pin the opposite direc-
tion, i.e. for a period the particle passes along orbit an angular distance,
smaller than Zr It contradicts all solutions, obtained by us,ludéing the one
shown in Fig. 11.1. On an absolute value the digpteent (11.31) exceeds the
values, calculated numerically:

Parameters dd o7 |

o, B, numerical calculation under the formula (11.31).
-0.7 0.1 0.0128 0.029
-0.7 0.3 0.15 0.27
-0.7 0.5 0.60 0.769

Thus, the obtained approximate analytical solufilth31) is mistaken.
In Fig. 11.2 a relative period of calculated tcapeies is constructed, depend-

ing on ,85'5. In such processing the relationGat- 0 become linear:
P =1+ Aﬂgs . (11.32)

Then the rotation of the pericentre will be
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opr = 27(pr -1) = 2MBL° . (11.33)

For Mercury ata; = - 0.829 from Fig. 11.2 we defin® = 0.8 is defined. Then
according to (11.33) a displacement of the periecats, = 1.96¢10" will make
opr = 2.7+10°. For 100 earth years Mercury does 415 revolutitdrerefore, the
displacement for this period will mak&; = 0.23.

An extremely small size of displacement is protd&mnot only for observa-
tion, but also for calculation. We have shown, tihat approximate solution of an

equation gives a large error. For Mer-
cury the equations (4.80) and (4.8: or <

were also numerically integrated. |
appeared, that the results hardly depeI 10
on conditions of integration. The rea /0.7 /’

>
\

son of errors in the integration of i 051:-0.9/// 0.6 | A

trajectory equation (4.80) consists i105 ) A ARV -0-5

the fact that on the boundaries of int¢ " y/ e

grationR = R, andR = R, a radial ve- Zﬁ/

locity reduces in zero. ol oz o3 7
(4

Fig. 11.2 Asymptotic relations @ at
small .

To receive the approached solutions with error Emal7+10’ is the big problem.
Apparently, the method, which we used to defineraect offset value of Mercury
perihelion, is the only possible in this case.

Perihelion advance (11.4), obtained by Gerberamdirmed by A. Einstein
after a substitutiorz, T anda, according to (5.14), (5.36) and (5.15), receiaes
kind

= 6mipB; . (11.34)

As we can see, the expression, obtained by us3 1L gives in 3 times smaller on
an absolute value result. G.l. Suhorukov and otfgetshave received in 3 times a
smaller perihelion advance of Mercury on a compariwith (11.34), too the nu-
merical value (11.34) for Mercury makég; = 5 10°, which, though in 200
times more than the value, obtained by us, 2.7, h@vertheless, is rather repre-
sents enough small. In A. Einstein work [76] thelpems of two bodies are re-
duced to an integral

6= j dy , (11.35)
%+i V2 gV
2ty Ty ray
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which is identical to an integral, obtained by (1.20). The latter was solved
limiting by the addends wity. A. Einstein integrated (11.35) also approximately
but by the other method. This explains the diffeeenf an result (11.34) from
(11.31). And both they are incorrect approximateitean of a precise equation of
trajectory (4.80) - (4.82).

In summary we will bring some totals.
1. The real value of planets perihelions precessaw remains uncertain.
2. The relation of force of interaction of two beslito speed results in the preces-
sion of the pericentre. At very small speeds trepldicement of pericentre for a
turnover is determined by the expression (11.33),far Mercury it makes 2.7+10
° radians or 0.23per one century. This effect represents such d,ssige that it
can never be confirmed by the observations.
3. The offset value of Mercury perihelion deterndiri®y U. Le Verrier on the ba-
sis of Newton’s gravitation law, is doubt full afar its finding the problem of
many bodies must be decided.

11.3. INTERACTION OF MANY BODIES

According to the law of world gravitation (11.1het body with massn,
gives body with massy acceleration
_ F G
Wy = — = - TZ
rnl R21
where R,, is a position vector from the second body to tret bne. The accelera-

tion of the first body is determined by the masswfacting body and the distance
between bodies.

If there is a third body, it according to (11.1ijlwive the first body the ac-
celeration

Ry (11.36)

_ Gm, -
Wy, = = - Rs; - 11.37
31 I’T\l Rgl 31 ( )
Having N of bodies each df - 1 bodies gives to objeat; the acceleration, de-
fined by the mass of an acting body and distance ip Therefore, the full accel-
eration of bodym; will be written so:

N N m F'él
o _ _ " i
i=2 i=2 i1

Under the action of acceleratiofy, the speed); of bodym, and its arrangement

R, in relation to the other bodies varies. It resiritshange of value of accelera-
tion v, . Similar acceleration has eachNf- 1 bodies. Thus, the acceleration of
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each body varies with the passage of time, thecitede and position of bodies
vary. The determination of these values makes hlgmoof many bodies.

We will consider the interaction of spherical bel{particles) among them.
The system of bodies is isolated, i.e. it is naedon outside. The particles at the
motion can adjoin and merge. At the collision oftigées the kinetic energy of
motion passes in a thermal energy of particles. ddrgact can happen from the
tangent component of speed, therefore, the paditdée confluence gains it's own
rotation. The listed problems should be clarifiedtiae result of the solution of
many bodies problem.

We will decide this problem in Cartesian coordinaystenx, y, zand the
number of each body will be characterized by thmembers, j, k, varying in lim-
its,

i1<i<ip, j1<j<j2, ki<k<k. (11.39)

The total number of bodies is determined by exjwass
N=(2—i1+1)(2—j1+1) ke —ky +1). (11.40)

In these symbols of particles mass willmg, and the coordinates and projections
on them of velocities and accelerations will better so:

Xiik + Yijk + Zik » Uijk » Vi » Wik » Ui » Vi » Whje - (11.41)
The position vector from the body with masg up to the bodyn,, will be re-
corded with two indexes:

R = 1 Gt = %) + 1 Ot - Vi) + K @ - Zy ) - (11.42)

In such symbols a projection of a body acceleratigp to the axis¢, located un-
der action remaininy - 1 bodies, according to (11.38) will accept adkin

k=k,
1=z
. & M (anl - Xijk)
Uy = - G Y 2 nipu Ry # 0. (11.43)
= Rim
j=];
k=k;

ConditionR,, # 0 means, that the summation is carried ouNonl particle, i.e.
the particlem,,, is eliminated from summation. The similar expressiaill be
written for projections of acceleration on an axendz

As the result of integration of acceleratidp,, we obtain a projection of a
particle velocity to the axig, and after an integration of speed we obtain dle |
of a particle motiomm,,,,, under the action of many bodies:

t
Upni = Umpio T J-umnl dt, (11.44)
0
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t
Xmnl = Xmnio + v"umnl dt! (1145)
0

whereXmnio = Xmni (0), Umnio = Umni (0), are the initial values of coordinates and the
speed of particles at the moment instant0. For projections of speegn, Wi
and coordinateg., Znn for the axesy andz, the expressions will be similar to
ratios (11.44), (11.45). The equations (11.43)1-4%), recorded for three projec-
tions, completely determine the motion of each frinbodies. Two groups of
integral equations (11.44), (11.45) are includedhis set of equations, which in
other record will be two groups of differential egions. The total of these equa-
tions isN, = 3N 2 = @\. 6N beginning conditions should be known for the solu-
tion of N, equations, i.e. initial positions and speeds bNabodies in projections
to 3 axes of coordinates. According to (11.42R#inthe components of all projec-
tions are included, therefore, the equations defiemd each other on coordinates
and cannot be integrated separately.

To control the right solution of a problem it isaessary to watch the conser-
vation of integral values. The mass of all bodiesutd be saved during the mo-
tion.

N
m = > my =const, (11.46)
ijk
where the summation is conducted on indejkefor N particles.
As the projection of a momentum with mansg, to the axisx is equal toP,, =
Myn Unny thenx - projection of a momentum of the whole systenbodlies with
allowance for (11.44) will be

N N t N N-1m My X - X
Px = zmmnl Upni = menl Unnnio - GJZZ K (:;mnI & )dt'

mnl mnl o mnl ijk m

Under an integral the double summation is madahith the differences of final
coordinates with the same masses are repeated twitwith different signs. For
example,aN=2;m=i=n=j=1;1=k=1, 2 we have

2 1
22 Mot My Gt = Xige ) = Mogg Migp(Xa11 = X412) + Mizp My (Xagp - ¥111) = 0
mnl ijk

(11.47)

Therefore, the integrand expression is equal to,28vd momentum of all bodies

N
Pe = D My Unno = Peo =const, (11.48)
mnl

i.e. is saved during the motion.

We will record the x-projection angular momentunbotly:
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Mumnix = Prmnix Ymnt = Pmniz Zmnk (11.49)

Then for the whole system with allowance for (1),481.44) is

=My M (Yijk Zmnl ~ Zijk ymnl)dt

N t NN
M, = Z Moy (WmnIO Ymnl = Pmnio Zmnl ) - GI z 3
mnl omnl ijk I'-\)im

It is easy to be convinced, that the double sumomatinder an integral is similar
to (11.47). It is signify that the-projection of the angular momentum of system
bodies, is the following

N
Mx = menl (WmnIO ymnl ~ Omnio Zmnl) = MxO = COﬂSt,
mnl

i.e. it is also saved during the motion. It is resegy to note, that at confluence of
particles their quantity decreases, the angular emoms of bodies system will
vary, and a part of it will pass in a angular motmemof bodies own rotation. The
obtained results are fair for the components of mmwms and angular momen-
tum on the axeg andz

N
M, = D (Po Zun = P Xom) = CONSE (11.50)

mnl

N
Mz = Z (Pmnly anl - Pmn|>< ymnl) = ConSt'

mnl

By dividing a pulse (11.48) of bodies systems anritasan, we will receive the
speed it of motion along the axis

u =P,y /m= const. (11.51)

As we can see, the system of bodies will move withstant speed, despite of the
interactions, happening inside it. The speed ofianai is connect ed with centre
of masses of a system, whigftoordinate is determined by the expression

N
X = D My X/ (11.52)

mnl

The important characteristic of interacting bodgethe kinetic energy

N
Ec = 05 Z mmnI (urznnl + Drznnl + Wrznnl)' (11-53)

mnl
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At the interaction of two bodies the trajectory3jscan be an ellipse, parab-
ola or hyperbola. At elliptical orbitag < - 0.5) energy (11.53) will vary from
minimum at the apocentres up to maximum at thecpeties. At hyperbolic orbit
(a1 > - 0.5) the energy of approach-correcting bodigisbe increased, will reach
a maximum at the pericentres, and then will deereaml be aimed to a constant
value along the infinity. Such behaviour of a kioenergy will be observed at the
interaction of many bodies: at their retractiowili decrease, at retraction of bod-
ies at one point it will to be increased, and ab# existence of a system of bod-
ies the kinetic energy must vary in constants Bmitherefore, the character of
behaviour E; in time will testify to stability of a system, arttle inexplicable

change of a kinetic energy can testify to the rkiesteof a problem solutions.

If Rmn andRy - radiuses of interacting particles, when theyrapph at the
distanced < (Rnn + Rji) such particles we consider merged in one. Abision
the particles have relative closing velocities, Kieetic energy of particles will
pass in a thermal energy of the merged particlés loalculate it. Let’'s consider
the motion of a particleny relatively a particlen,,. The projections of it's rela-
tive attitude and speed (see Fig. 11.3) on anxawil be written so:

Xr = Xk = Xmnh 1(34)
Ur = Uijk — Unmnl. 1(85)

From the equality of a static momer
relatively the pointC,

Fig. 11.3 Relative velocities at confluence
of two patrticles.

My

My Xe = (6 —X)My.  (11.56)

B
x-coordinate of the centre of twc V Xef [ Xl

masses is determined 4/

/xi/'k
_ o M X
X, =—m. X
Mo + My
(11.57)
Then newx-coordinate of the merged particle will be
W X
X:nnl = anl + ka . ’ (1158)
My + My

and its mass ism,, = My, + M . If the massmy, < my, to a particle is

given a number of a greater partiolg is, i.e. it mass is designate‘l‘ji'jk .

As x-component of a pulse of the merged particle isaktua sum of mo-
mentums of making particles
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Ponx = Prnix + Bk (11.59)
that after a substitution of their values we detaenthe expression for its speed:
u, = Mhon Uy, + Mhe Uy - (11.60)
My + My, My + My,
The relative radius of a particig
R=ix +]y, + kz (11.61)
and it relative speed (see Fig. 11.3)
s=iu +jo, +kw (11.62)

are directed to each other at the arglewhich can be expressed from determina-
tion of a scalar produd®s = Rocosgr, ) as follows:
U +yrop +Z W,

Ro

Then the radial speed of a partiahg relatively a particlan,,, to which the ap-
proach happens, will be:

cos@, )= (11.63)

Xl'ul‘ + yl'vl‘ + ZI'WI'
R
At the collision of the particles their kinetic @geg will turn to a thermal en-
ergy according to radial speeds of particles nedfi the centre of masses. As
relatively the centre of masses the radial puldgsadicles are equal, their radial
speeds will be

DR =vCOS@, )= (11.64)

M m
Urmnl = VR +; URijk =UR ¢. (11.65)
Mppnr + M Mppn + M

The kinetic energy of two merged particles will pas the increment of a thermal
energy of a new particle. Then its thermal energh wllowance for thermal en-

ergy of the particles componeni,, also Ey, will be written:

2 2 2
' Mmni® Mk VRijk M Mt
Emn = Eijk +Epn + ol Rmnl 2 = = Eijk + Epn + K _R*
2 2 Myt + My 2
(11.66)

where a relative closing velocityz should be determined at a distance between
particles equal to a sum of their radiuses:

R=d = Rnn + Rik. (116

Approach-correcting particles, as it is seen frag E1.3, except radial mak-
ing speed have transversal, which at the formaifdhe merged particle will give
it the rotation. Let's calculate the own momens, the spinsS of new-formed
particles. Let's consider the projections of spesid the position of a particle on
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a planeyz (see Fig. 11.4). Let’s define the angular particieomentums relatively
the centre of mass€s

ASpnx = My (Wi MN -0y GF) + My (Wi ND + vy FE), (11.68)

where distances up to centre of massese determined similarly to (11.57):

m )
MN = - Emnl y,,ND = - mle vi GF = MZ“ FE = rni—,Jer_ (1169)

’ ’

mnl mnl My ik

Herey, andz, are determined similarly (11.54).
After a substitution of distances (11.69) in (1).68e obtained thex-
projection of a spin increment of the merged phertic

AShnx = Me W Y, -0,2Z;), (11.70)
where
m .
mye = k. (11.71)
My + Mk

m,. is a normalised (reduced) mass at the interacti¢two particles.

- The projections of a spin increment of

W the merged particle on the axgsndz will
Vijk W be similarly recorded. And with allowance
G » c mit for the spins of initial particles the spin of the
g merged particle on these axes will be:
m,..i Umnl
Fig. 11.4 Formation of a projection of a spin on
0 an axisx at confluence of particles.
M N D Yy
Sr'nnly = Sﬁjky + SmnIy M (ur Z - W X, ) ' (11-72)
Stz = Sjkz + Smnly + Mg (0 X -U Y, ). (11.73)

In expressions (11.70), (11.72), (11.73) a relatpeeds, andw, are similarly
(11.55). The relative distances and speeds atrdigtgtion of increment of spins
should be calculated at the moment of particlegsazinHowever, as the interac-
tion of two merging particles at the moment of deafice much more exceeds of
action of the remaining, ones the value of a amgulamentum will be saved on
small distances before the confluence. Thereftwe,iricrement of a spin can be
determined at the point close to the point of assikce.

The summation of spins on all particles represéotal systems angular
momentum made in the own rotation of bodies:

Sx = zsmnlx* Sy = Zsmnly' Sz = ZsmnIZ' (11-74)
N N N
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The spins of a systens, , §, S, and the moment of pulsés,, My, M,

make a total system angular momentum of the ofawstang bodies, which com-
ponents
Mg =My + S, Msy=M, +S, Ms; =M, + S, (11.75)

are saved during the existence of an isolated sysfanteracting bodies at every
possible motions and transmutations.

Alongside with a kinetic energly. of a system it is necessary to consider a
thermal energy

Ec = D Em (11.76)
N

If the problem is decided disregarding the heaidfers, the thermal energy will
grow in a developing system of bodies, and in tiadianary one ones it will re-
main constant. Especially strong increase of anthéenergy will happen at an
accretion of a substance.

The problem of many bodies represents the gremtesest in the studying
behaviour of large-scale arrays of substance inuttigerse. The solution of these
problems will allow to understand the gear of fotioa of planets, stars, planetary
systems, sidereal accumulations, galaxies and athieccts, which are observed
and can be observed in space. Originally, thessysuof substance can be consid-
ered as statically homogeneous, with initial meamsity

m
Po abc (I1)
wherea, b, care values of an area along the axig, z accordingly. The form of
area can be not a parallelepiped, then the vaubscwill be the values of a par-
allelepiped, enveloping the area. The coordinaés axe directed so that b> c.
Let's pass to the dimensionless variables:

X=xa, y=yla Z=za my=m/m. (11.77,a)

After a substitution them in (11.43), we obtain eegsions for acceleration in the
normalised kind

~ e (Kot = %)
Uy = = D, — =g, (11.78)
N-1 Rim
whereR_ # 0. Thus we determine the transformation for timed atso for a
derivative from coordinates on time as follows:

~ Gm ~— - a ~ . al
t =t |— =t/Gp,bC; u=u,l—; ug=u—, 11.79
22 Lo Gm Gm ( )
here
b =bl/a, Cc =cla. (11.80)
218

As we can see, the normalised acceleration (1di®rs from (11.43) by ab-
sence ofG. Therefore, it is possible to consider all consegequations, since
(11.44), in the normalised kind, substituti®@g= 1 and the absolute parameters on
dimensionless ones, noted above ~.

The array of the substance in volume abc can be divided into elementary

volumesVy, = VIN , in which centre we locate the bodies with masses
my =m/N. (81)

To have the sides of elementary volumes close tuewat different forms of ar-
eas, we will act in the following way. The quantdf steps, i.e. the intervals be-
tween bodies along ax&sy, z we will designatdVls, Ns, Ks accordingly. Then the
distance between bodies along the axisill be Ax = a/Mg, and the quantity of
steps along the axgsandz we take as the whole part of fractions:

Ns = Int(b/ A X), Ks = Int(c/ A X). (11.82)

If iy, j1, k1 is @ number of the first nodes on axey, zaccordingly, the numbers of
the latter ones will be written
iz:Ms+ 1; j2=N5+ 1, kz:Ks+ 1, (1183)

and the total number of nodBswill be defined by expression (11.40).

The masses of bodiesy are put in nodes. If mean, on their diameter, den-
sity of bodiespy, than, considering bodies as orb its, their, rsekuwill be de-
fined as

Rik = (3mjk 1 AmDy )1/3- (11.84)
The density of celestial bodigg vary over a wide range. To calculate them, it is
necessary to set them, certain relations of radioéé&ody from the other proper-
ties, for example the masses and temperaturesraiigs of bodies is necessary
for calculation of a distanca between the bodies during their confluence. At the
first stage it is possible for all particles to sgntical density, to a equal for ex-
ample, mean density of the Earth:
Dik = P = 5410 kr/nv>. (11.85)

Let's record in a normalised kind a distance betw@mlies during a contact with
allowance for of density (11.77) and (11.85), wile® masses of particles are de-
termined (11.81)

~ 1/3 ~ N3
g =R Ric [ 0Cpy | [ BEp, | (11.86)
a a | 4ANpy, ATN Py

At identical density of particleg, the normalised distance between the particles
depends on a ratio of density as follows:

5z 1/3
4= 2% | (11.87)
4iNp
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The important conclusion follows from here. All egjons, since (11.78), and then
from an equation (11.44) on (11.53), recorded imoemalised kind G = 1 and
variables with ~), for want of collisions do notpéad on the value of area. There-
fore, the solution of a problem of many bodies thoe formation of a planetary
system can be widespread on the formation of aesaflsystem, sidereal accumu-
lations, galaxies etc. However, if there is confice of bodies the normalised
value of confluence depends on relative dengitg,. If g, for usual celestial bod-
ies varies not very muclg with the increase of the value of the area deeseas

considerably. It will result in decreasing with increase of the value of area,
therefore the integration is necessary for condgctip to the smaller values. The
thermal energy of bodies will be increased by adarsition of a problem of many
bodies for large areas. Thus, the problem becowiesetf-similar.

Despite an apparent simplicity of many gravitatbuglies problem: the sim-
ple equation for force (11.1) plus the equatiomuition (2.4), in the literature
[49] There are a lot of diverse statements ofatastton. We have begun this prob-
lem with the purpose to confirm the mechanismsfoaiation of circulation at
formation of vortexes in artificial [58] and natufé2] conditions with the refer-
ence to formation of space systems. During workhaee met the problems of
mistaken solutions, which made us search for therattatements of a problem.
Explained above is the last one. We consider intbst successful. This statement
allows monitoring the parameters and destiny ohdamdy. At the same time, it
envelops a whole system and allows to understariddaeselops, what its proper-
ties depend on, how they will vary. The given staat enables to consider also
the interaction between the systems and influefhexternal systems to the abso-
lute properties of a system.

The normalised statement allows simply settingrétial condition of a sys-
tem, for example, its initial rotation, its domianass, and the degree of a discre-
tization of a system. By giving numbirof bodies in a system the same program
can be adapted to different ones on power of th/EOTER. By a variation of
number of bodie&l in a system it is possible to check up the retatbthe solu-
tion to a degree of its discretization etc.

On the considered statement the program Galactictkhe Turbo Basic lan-
guage was developed. With its help it is possiblednsider problems of any

number of bodies, for exampleMt=1; b =0,5;¢ = 0,25 5 the problem of two
bodies will be decided. Examples solving the protdef two, three and four bod-
ies by this program are given below.

11.4. EXACT SOLUTION OF
AXISYMMETRIC MANY BODIES PROBLEM

We will consider the interaction of bodies, evenly located on a circle with
the radiusr, (Fig. 11.5) at the angular intervel = 27in. The bodym, will give
the bodym; acceleration, which projection to an axis equal to
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__Gm
Wy =— A’ cosx . (11.88)
TriangleOBAIis an isosceles, thereforer 2 ¢, = 1, whence we obtain:
a:(n-¢l)/2:(n-2ﬂn)/2:g L (11.89)
n

From this triangle the distane&B = 2r,sin (0,%) is determined. Then the accel-
eration (11.88) will be written so:

Gm,
Wy, =M (11.90)
2T asin(m/ n)

. . . 4an
The angular distance between a particjeandmy is equal tog, = 2¢, = — and
n
it will give a particlem, acceleration along the axis
Gmy
Wy = ———— . (11.91)
7 agsin(2n/ n)

The particlem, will give the particlan, acceleration

Gmy
Wy =———7—— 11.92
T 4r2sin(3/ n) ( )

Fig. 11.5 Interaction of the axisymmetricly located bodies.

At an even number of particles= 2., wherek; is the integer, at the oppo-
site m1 end of diameter will be a particle with raenisk, + 1, and the remaining
particles with numbersk{ + 2) + n will be located on the lower semicircle, sym-
metric ally to particles = 2+ k.

For each of the particles on the upper semiciteée multiplicand with sine
can be written as 1/sini[¢ 1)7n], which for a particle with numbek{+ 1) will
be equal to 1. Therefore, according to (11.90) £.92), the total acceleration
given to the particlen, by remainingn - 1 particles with equal masses = m, =
m; =...m,, will be written as

W, =. M 1+§; (11.93)
N g2 sin[(i - Yrn] | '

i=2
At odd number of particles = 2k, +1 on the oppositey, end of the diameter there
will be no particle and the first addend in (11.98) be absent. In this case the
total acceleration of the first particle in a pjen to the axi will be the fol-
lowing:

ko +1 1

Gm
= . 11.94
Y 2r2 5 sin[(i - D7n] ( )
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By virtue of a rotational symmetry the accelerat@fna particlem, on the
axisy is equal to zero, therefore, the acceleratigndetermines the action of all
particles completely. From Fig. 11.5 and expressi@til.93) and (11.94) it is
seen, that each fromparticles is given the acceleration, by remairongs which
is directed to their centre of masses and whidmimverse proportion to quadrate
of a particle distance up to it, i.e.

W = G";lro n), (11.95)
Mo
where at an even number of particles
K,
. 2
f(n) =025 ——+1 , 11.96
( ) [ .Zz: sin[(i - 2)77n] ] ( )
and at the odd one
ko +1 1
f(n) =05y ————— . (11.97)

= sin[(i - Drn]
The acceleration (11.95) for a partioke can also be written as the force of action
on it

2
F, :-G':‘gro f(n). (11.98)
0

The multiplicandf(n) depends on mutual arrangement of bodies. If durin
motion it will not vary, i.ef(n) = const, the acceleration (11.95) or force (1)1.98
will differ from the force of the world gravitatiofi1.1) only by constants. There-
fore, the motion of each afbodies will happen under the action of a centredd
(11.98) similarly to the motion of one body, beimgder the action of the other.
Their trajectories will be conic sections, in whitttere is a centre of masses in a
focal point.

In connection with an identical kind of forces (@8) and (11.1) these inter-
actions can be united node, i.e. in centre of nsags® in a Fig. 11.5) in addition
to placen + 1 body with massy, which will act on each from bodies by force
(11.12) or to give acceleration.

W =- Gm;ro . (11.99)
)
Then the total acceleration of each frarbodies will be equal to a sum of accel-

erations (11.95) and (11.99):

__d%, _ Gi,
= =-— +my f(n)]. (11.100)
R [my + m, f(n)]

As we have shown in chapter 5, at Coulomb intevactfair for the given
case, too the trajectory is described by expres@d), and the time of motion
along it is (5.22), (5.25), (5.27) and (5.30). Tgerameters of motion are deter-
mined by the parameter of trajectamy, which depends on the parameter of the
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interactionyy, included in the equation, of the relative mot{dr63). Comparing
equations (4.63) and (11.100), we obtain the esjwador the parameter of inter-
action in a problem of axisymmetricly locatedbodies round a central body as
follows:

= =G [my + m, f(n)]. (11.101)
The expression (11.101) is the key in this problgith allowance for (11.101)
equations (11.100) can be written so:

d’r, _ tiTo
at*> )

It has the solution as an equation of trajectorg)(Swhere the parameter of trajec-

tory

a = (11.101a)
Top0p
whererg, andvg, are the parameters of pericentres of particlesiation to the
centre of masses of a system of bodies.
The radial velocity is calculated according to §5.4nd the transversal is
equal to v = Ur,. All values here are normalized to the parametdrghe

pericentresyy, andrg,. The time of motion of bodies on trajectories éteimined
according to (5.21), (5.25), (5.26) and (5.30), rehthe parameters are normalized
to values at any poimy, with speedvyy and vy relatively the centre® (Fig.
11.5). The motion of each n body happens at thearwation of a kinematic mo-
menth = const. If to accept, that in Fig. 11.5 the bedie represented at the
pericentres, the line of apsides of the badypasses on the axis Its apocentres
will be located on the negative values of the axi¥he apsides of body is in-
clined to the axix at the anglep; = 27#n, bodym — at the angle, = 2¢277n; m, —

@3 = 3+271n etc. The central body with masg will be motionless at 0.

So, the axisymmetrical problem nbodies is reduced to a problem of the in-
teraction of two bodies. The motion of each froranthhappens along a constant
in space trajectory, which belongs to a set of me&wonic section and is deter-
mined by the parameter;. The solution of this problem has the importamoth
retical value. For example, whem >> m the system represents a central star and
moving round itn planets. In this case, despite of actions of tl&gqis against
each other, their orbits are constant in spacethadyericentres do not preces.
There are many other questions, which can be aesw®r solutions of this prob-
lem. The practical value of the given problem cstssin the capability to deter-
mine an actual error of computing algorithms of gnhadies problem.

11.5 TRAJECTORIES OF MOTION
AT INTERACTION OF SEVERAL BODIES.
We will analyse the results of the program Galagtsolution which algo-
rithm is circumscribed in item 11.3. At the begimgpiwe will consider the interac-
tion of two bodies with different massy = 2m,. At the initial moment = 0 a
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position of particles at a point of apsides anddvarsal speed, are set. The tra-
jectories of motion of bodies are considered angba, = 0 up to some value,
characteristic of hyperbolic trajectories. At zéransversal velocity the particles
move radial up to a contact.

The motion happens relatively the centre of ma&sésig. 11.6). The speed
in pericentres of particles it is set by their tima with angular rate relatively to
p.O:

Vp1 = Wlo1,  Upz = Wlop, Whererg, + rgp = a.

Then the velocity of one particle relatively othew, = vy + vy = wa. As the
parameter of trajectory is in this case determined

a; =-G(m +m, )/ (avy ), (11.102)

then, passing to dimensionless parameters, aceptdifill.77a) and (11.79), we
obtain

1
ap =-—, (1130
w
where
@=w/a’lGm, m=m +m,. (11.104)
Fig. 11.6 Stages of motion of two
Dp}'r 0 ! m ‘ 2 3 bodies ata; = - 0.5597 at the instants
I la v 5 - 1-0.001;2-0.5;3-1.5;4- 2.5;
o ¢ + 6| o 5-3.0;6-3.5;7-4.5;8 - 5.5;9-6.0.
; At a, = -1, the particles
. 8\ . ? _move along the circles, at > -1
® g ‘ ' T particles move along the ellipses

and the distance between them is
increased. Ifo; < -1, that happens at small angular raie the distance between
particles will decrease. That is the particles begbtion not from the pericentre,
but from the apocentre with parametBgsando,. Therefore we will designate this

valuea; asay, according to determination, we have

ad = M _HRa _ Ry

2 2 2 71 )
Ral)a Rpl)p RP

After a substitution in (11.105) valueR,, according to (5.7), we obtain the ex-
pression for the parameter of trajectory

(11.105)

a

ag
a, =- , 11.106
1 a1 ( )
wherea; - value of expression (11.103)a@t> -1.
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In Fig. 11.6 the moment of motion of two bodies ahown at initial angular
rate @/2.31 = 0.2. The images are taken from a scre¢heo§creen monitor. For

each from nine positions the times are normaliséti the factor 2.31t . The
introduction of a factor is stipulated by the fatiat this and all consequent illus-
trations are calculated according to the versiothefprogram Galactica, in which
the parameters were normalized not to total nmasbut to mean densitg,. In
position1 the bodies are at the apocentres. The primes @$edow a direction
of speeds of bodies. The bodies approach each iotlzerotary motion relatively
and in positions reach the pericentres. Then they are removed #aah other
and in positiorD come to the apocentres.

In Fig. 11.7 the trajectories of two bodies aremsitted at change of initial
speed (/2.31) from zero up to 0,7. The initial distancévieen particles is equal
to node. The beginning of coordinates is locatedpsid by one of the particles.
At @ = 0 (the trajectoryl) happens radial approach of bodies.@12.31 = 0,1
particles move along prolate elliptical orbits, meing the motion from the apo-
centre. With increaseo the eccentricity of orbits decreases and for dasee
trajectories become the circles. With further imse of initial speedo, the parti-
cles begin to run up, i.e. the initial point foeth is the pericentre. For situatidf
at (w/2,31) = 0,613, the trajectories of particles beegrarabolas, and with fur-
ther increase

0.8 7] 08 4 08 3
Fig. 11.7 Trajec-
tories of motion of 0 P S —
two particles at a <
variation of initial 0.8
transversal  veloc- 08 S04 12708 S
ity w/2.31 (in 0.8 7 0.8 5 08
brackets para- T R e
meter of trajectory o TS T Nwaah i N
ay) is indicated: - L 0 1
1-0(0); I S INERE
2-01(-0514); 8L o Tt o8 T
3-0.2 (- 0.5597); Iy 2 0 |
4-0.3 (- 0.658); Z i EEERRE J
5-0.4 (-0.872): SERRBSSEN —
6-0.433 (- 1); 0 0 ( pat 0 e
7-0.5 (- 0.75); T e
8-0.55 (- 0.62); EARRRESE -2.5 -20
9-0.6 (_ 0_521); >0 { 0 1z 20-2.5 0 2.5 -20 0 20
10-0.613 (- 0.5); 10 ] 2 N2
11-0.63 (- 0.473); | 1 RN
12-0.7 (- 0.3826). el 0 ST 0 _
they are trans- 20-20 20 20-20 0 20 _2(_]20 0 20

formed into hy-

225



perbolas. With increaseo, hyperbolas are rectified and at —» o are trans-
formed in verticals. Shown in Fig. 11.7 numericaluons of a problem of two
bodies with a high degree of accuracy agree wighathalytical solutions. In Fig.
11.7 it is illustrated by the normalised valuespafametera;, on which value
wassigned at the numerical score, was calculatemyrding to (11.103), to re-
ceive trajectories as a cirdieand parabold0. As the result of the numerical solu-
tion the trajectories as a circle and parabola weceived and their parameters
were maintained with high accuracy.

We will record the equations of these trajectoiiea system of the centre of
masses (see Fig. 11.6). As the distances of matiobm the centres of masses are
in the equation

oM = o2,
and sum of distances; + ro, = R, whereR - distance between particles,
ror = Rmp/m, roo=R m/m. (11.107)

The equation of trajectory (5.3) at a position efipentre at the anglg, will be
written as

R
= P . (11.108)
(a1 +Ycodp - ¢p)- o
] a Fig. 11.8 Stages of motion
2 3 of three bodies atn = -
" m & @ 0.6356 at the instants 3.27
¢ By r:
0 » ® ® 1.102-203-304-
4.0;5-5.0;6-6.0;7 - 8.0;
» . 8-9.0;9-10.0.

i 4 5 6 Receiving the ar-
¢ rangement of pericentre
o

® ® w Py for the flrst_body with the
angle ¢, = 0, and for

® ing to (11.107) and
(11.108) the equations of
their trajectories rela-
) tively the centre of

masse® are obtained as

‘ 9 second atp, = 77 accord-

follows:

Rrm, /m Rpm, /'m

o1 = (0'1 + 1)(;0@ —a, v Fop = (0’1 " 1)Coi¢ - 71)— o . (11.109)
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It is necessary to note, that a direction of rotain Fig. 11.6 and the consequent
ones by virtue of the opposite direction, on aegref the screen monitor happen
clockwise. It is necessary to take into accounmmaring the expressions for tra-
jectories (11.109) with their images in Figures.

Now we will consider the axisymmetrical motion thfree bodies. In Fig.
11.8 the motions of three bodies are shown anindtngular rateo/3,27 = 0,2. At
such initial transversal velocity, the particlegpagach and in a positiod reach
the pericentres, then again begin to be removed frach other and in positiéh
come nearer to the apocentre.

In Fig. 11.9 the influence of initial transversalocity w/3,27 on trajectory
of motion of three bodies is submitted. At = 0 the three-radial radial approach
of three bodies (trajectord) happens. At nonzero valu®@ the particle approach
each other up to pericentres (trajectoéle8, 4, and then return to the apocentre.
At the initial transversal velocity, appropriatedp= - 1, all particles move along
circle 5. At some greater valu®, the particles are retreated from each other (tra-
jectory 6), reach apocentres and again return in periceniteg, appropriate to
a, = - 0,5, the particles move along parabdlagit some greater initial velocity
@, the particles move along hyperbo$and9.

We will define the analytical expressions for trageies of three particles.
For three bodies without centrahf= 0), according to (11.101) and (11.101a), the
parameter of trajectory will be

ay = -Gm/(V3ro,08,) - (11.110)

Fig. 11.9 Trajectories of 71 1 2
motion of three particles
at a variation of initial
transversal velocity -
@13.27 (in brackets pa- ¢ 0 T 0 <]
rameter of trajectoryn;)
is indicated: 7 ; 3
1-0(0);2-0.1 (- 0.528); S = NEE} i
3-0.2 (-0.6356); AN =
4-.25 (- 0.675); [ ] 0=
5-0.306 (-1); 0
6 - 0.4 (- 586); N
7-0.433 (- 0.5); -4
8 - 0.5 (' 0.375), 5 10 20
9-0.6 (- 0.26). 7 |

|
)

From Fig. 11.8 it
is seen, that the dis- P
tance of each particle ; . 20
up to centre with _s5 5 -10 10 -20 20
massesO and initial
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polar angle can be written
o =/W3=R,/\3, ¢, =n6+2m(i-1)/3. (11.111)

Then the equation of trajectory of each partictxoading to (11.108), rela-
tively centre of massea3 will be written so:

fg = fop

o =

I (a1 +1)codg - gg ) - o,
wherery, =R,/ J3 is the least distance of trajectories up to centtk masses
+.

, i =123, (11.112)

As well as in case of two bodies, at the solutbequations on the program
Galactica, the initial velocity at the apsis pdmset by the rotation of area round
the centre of massé&3 with the angular ratev = vgy/ro,. After a substitution it in
(11.110) and fulfilment of transformations the eegwmion for parameter of trajec-
tory is obtained

a, =-1/ @2, (113)
which is identical to the expression (11.103) atititeraction of two bodies. Here,
as well as in case of two bodies,amt< -1, the motions begin at the apocentre,
therefore, according to (11.106), it is necessarpring a; into accord with the
parameters in apocentres.

In Fig. 11.10 the axisymmetric motion of four balis shown atw = 0,2.

The bodies begin motion at the apocentres, in &ipog! reach the pericentres,
then begin to remove and in a posit®boome into the apocentre.

m ] m Fig. 11.10 Stages of motion
e o |2 e 3 4-th bodies at = - 0.587 at
® the instants 2 :

Py 1-0.01;2-1.0;3-2.0;4-
® 3.0;5-4.0,6-5.0;7-6.0;8

MSI frm4 -» L -7.0.
i
7 5 6 & In Fig. 11.11 the in-
_ee
o

fluence of the initial trans-
® versal velocityw/2 on the

& trajectory of motion of
four bodies is shown. At
@ = 0 happens (see tra-
jectory 1) four-radial ra-
dial approach of bodies.
With increase ofw, the
bodies come nearer to the
centre of masses along the
elliptical trajectories, which eccentricity withehgrowth of w decreases, and at

19*‘3

228

9-0.6 (- 0.47). oL -8 -30

@ = 0,822 the trajectory becomes a cirglerhe further increase ab results in
the retraction of particles, at the beginning altimg elliptical orbits7, then along
parabolas8 and hyperbola8. In case of four particles, according to (11.1844l
(11.101a), the parameter of trajectory will be tertas

__clozs+2/2)m,
L= .

> (11.114)
Toplop

The initial angle of the particles pericentrespig = 774 + 7{i — 1)/2. Then
according to (11.108) the trajectories of each frimur particles will be deter-
mined by the equation (11.112) as for case of tipaicles. At the numerical
solution of equations the rotation of area rourel ¢bntre of masse3 (see Fig.

11.10) with velocity is setv= voy/rop, Whererg, = J2a/2. Expressing (11.114)

througha we obtain
_ _1+42/4
! 25"

At oy < -1 the parameters of trajectory are enumeratel@nthe formula (11.106).
The axisymmetrical motion of three and four bodgesonsidered without a

central body. It leads it, according to (11.10d)jricreasing on an absolute value

of valuesyy, anda;. Therefore, for the same trajectories, accordin@ 1.103) and

(11.115), it is necessary to increase the initmhsversal velocity by increase.

In all cases the central body will be motionlesalyhe centre of a system masses.
So, we have compared the precisely solutions (P).&flaxisymmetrical in-

teractions of many bodies with the numerical ofdse precisely solutions are
stabile in space. 1.2 71 1.2 51 1.4 3

T <\

(11.115)
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However, numerical solutions give open-ended ttajézs: the more their
pericentre displaces, the bigger the orbit ecogityris (see trajectorg in Fig.
11.7). Improving the numerical method we can essntreduce the change of
orbits during several periods, but it is impossitddiquidate it completely. It is
exhibited early after a large number of periodseSéhchanges are stipulated by
the fact, that the integration happens not accgrttira precise acceleration, which
is determined by the world law of gravitation (I)1.hut it is executed with an
error. Therefore, the approximate solutions of @bfgm of many bodies, for ex-
ample as expression (11.2), used by U. Le Veraieng will lead to the change of
orbit, even if it is not present. In this connentiave consider, that the problem of
secular changes of the orbits parameters of planeisSolar system is not com-
pleted and requires further research.

11.6. CENTRAL-SYMMETRICAL ACCRETION

At the accretion of substance the impacts of atchparts happen and the
mechanical energy of motion passes in thermal. Aturaerical experiments with
the program Galactica have shown, that this procelis large algorithmic diffi-
culties. For example, it is necessary to fix a monhwd a contact. Besides the im-
pact of several bodies can happen simultaneouslyhis connection there are
problems, which can be solved precisely with thip loé accretion.

We will consider the collision of two particles. lter we have the defined
radial velocity (5.27) at radial motion and time3®). At collision the particles
merge in one, which is in centre of their massexhBparticle velocity relatively
the centre

vr1 = oy My/m; V2 =0, My /M,

whereu;, is a relative radial closing velocity of particlaisthe moment of collision.

Then the thermal energy selected at collision af particles, will be
E = Moy + M7 - mo? .
2 2 2
If at the distancer, between particles their closing velocityug, at a point of
collision R = d their radial velocity will be defined by expressi(6.27), and the

thermal energy accepts a kind

2
mrevr 0

E = >

1 1
- ,Ulmre|:a - E:| , (11116)

where
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S UL (11.117)
m +m,

In the dimensionless variable (11.77) - (11.79)dkeression for a thermal energy

(11.116) will be written so:

mre

N ~ ~2
E = Mebro ,mmil 1) (11.118)
2 d Ry
where
=~ a
£ =B (11.119)

Let's consider the distribution of bodies in spagth densityo(r), radiusr, and
velocity o, (r,0) = 0. Let in an initial momerit= 0 the density in all space is con-
stant, i.e,0 = ;. The body with massy, located at a distanae < rofrom centre, is
acted by bodies of an internal systanx ;) and external witl >r,. Let's calcu-
late the force of action of an internal system (Hif..12,a) in a projection to the
axisz
By virtue of a rotational symmetry, the elements ng of an
dm= ordr277 sind@
a

b

Fig. 11.12 The force of action of central-

m -
b 7 ]R R symmetric distributed substance in a spherical
L dm LS dm layer with a radius on massm, located:a -
6 0/~ outside the substande; inside it.
7 7

v act uniformly on bodymy, therefore, the
force of action of a ring will be

_ _ 276pmyr *sin(6)d 6cod B)dr
R2

It is fair for all angles & 8< 7z It follows from geometric reasons

b =r-rcos@), R =+b%+rZksin%@), cos@B)=biR. (11.121)

Then it is possible to record (11.120) as an irategr

ddF

z

(11.120)

-1 = d
dF, = 2pGmgdr | _2(& V)_Vw , (11.122)
1{ry +1—2r1y)

wherer; = n/r, y =cos(f).
Let's designate x=r? +1-2fy, then y= (r'12 +1- x)/(Zfl) and
dy = -dx/2 T, . After a substitution in (11.122) we obtain

mGomdr ¢|R2-1. 1
dF, = - +—— . (11.123)
‘ 2r? j|: x32 o Jx
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After integrating (11.123) and returning to a vhalegy the force will be written as
-1
dF. = - 276G, pmydr 1-ny |

Z |
i Rz e1-2ny]

The process of limits substitution we will consideore detailed, as it represents
large interest:

(11.124)

_ 21iGpmdr 1+m, _ 1-1

JE2+1+2h R +1-27
The radicands represent quadrates of binomialgtber they are positive,

and the number, extracted from them, is also pesiffhe second addend Bt >

1

dF, = 2

(11.125)

__1-nh  __1°h (11.126)

Jiz-on+1 (-1
Let's note, that af; < 1 this addend will be equal to (-1). After a stifiation
(11.126) in (11.125) the force of action of a spd@rsurface with thicknesdr on
the bodym; will be written so:

dr, =- M

z 2
I

and the force of action of all substance containeaifull-sphere with the radius
will be

4rpr ?dr

r
F, = C™ (470 2r . (11.127)
0

2
)
This force is fair at any position of the aziselatively spherical area of substance,
i.e. it is directed on the radius inside an orb e mass of substance contained in
a full-sphere with the radius is equal to

r
m, = j4n;ar2 dr, (11.128)
0

then the force of action of a spherical accumutatid substance with centrally
symmetric distribution of density(r) on massm,, according to (11.127) and
(11.128) will be written:

F, :—GLJ“Z f, (11.129)

)
wherer, > r. That is without dependence from distribution astance density in
a full-sphere the expression for force coincidesl#iw of world gravitation (11.1).
We will consider now the force of action of a spbairlayer with a radius

on body with massllocated inside sphere (see Fig. 112, The projection of
force to the axig will be written similarly to (11.120), but with@nverse:
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ddF

_ 276pmyr %sin(6)d cod B)dr

= = .
The same expressions (11.121), as in the first fdlwav from geometric ratios.
With their registration expression (11.130) will tegpied

(11.130)

z

-1 = _
dF, = 27Gpmdr j(rl—y)dyw (11.131)
1 (72 +1-27y)
The expression (11.122) is identical to (11.13bwéwver herer; < 1. The

integral (11.131) has the solution (11.125), bu aubstitution of boundary value
y= 1 in the second addend igt< 1, according to (11.126), it will be equal to (-

1), and the integral (11.125) and, therefore, (31) Wwill be
dF, =0. (11.332

Thus, the spherical shell by a thickndssloes not act on a mass, located inside it.
As this conclusion is fair for each spherical laytee composition of forces on all
elementsdr of a full-sphere with a cavity with the radiugives force, equal to
zero, on a particle, located inside a cavity. Lette, that this outcome is known
in electrostatics: inside a charged orb there aréorces of action on a charged
particle.

Now we will consider the motion, of a substancea icentrally symmetric ar-
ray stipulated by own attraction. Only a substawicmternal layers & rl1 will act
any body located on the radius £Ir0. The value of force is determined by ex-
pression (11.129), whera = m (r,) is the mass of substance in a full-sphere with
the radiug;. Then the acceleration of bodyrat r; will be written

2
w=dn o Gnly) (11.133)
dt Iy
In an initial moment the density of substance ewbre is identical, therefore
4n
m(n) = = Ao - (11.134)

wherero = r,(0) is a position of bodyn, at the initial instantt(= 0). Let's con-
sider that during the motion of a substance somts pl@ not overtake the others,
therefore the mass of substance inside an orbavrtdiusr; (t) remains all time
of a constant, i.an(r,) = const. Then the equation (11.133) is identican equa-
tion of radial interaction of two bodies, as thsulé of which solution we have
received a radial velocity of motion (5.27) and time of motion (5.30). At zero
initial velocity the radial velocity and time witle written so:

v (ry) = J ZGm(rl)(ri - rij : (11.135)
1

10
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_ rl?E) g 1)
t = + t — || . 11.136
\) 26nr,) [JZGﬂrljrlo e g(vr \ ZG”(rl)J] ( )

Let's consider that the bodies, begun the motiomfthe radius,o, will con-
tinue to move until their collision with central ssawill happen. At the first stage
it is possible to consider what density of centnalss during an accretion does not
vary and is equal to some mean density, for exantipdedensity of the Earth =
5000 kg/ni. At this density the radius of central mass, withich the bodym,
will come in collision, will be

1/3 1/3
f = (3'“—(“)] = rlo(&] . (11.137)

41 P

After a substitution (11.137) in (11.135) and (BB)JLlwith allowance for (11.134)
we obtain the radial velocity of motion of mass at its collision with a central
body and time of motion up to the collision:

U3

871G P

v, (o) = 1o 3,00 {[Io—f] - 1] : (11.138)
o

3 [olpolo J? 3
t = +arctgl o, [——— || . (11.139)

With velocity o,, according to (11.138), the spherical layer of snas
dm = 4712 p,dr, will come nearer to a central body with a radiys As the

result of collision it transmits to body a kinegmergy, which will turn in the
thermal one:

2

1/3
dE, = dmoy _ Eﬂszg LN R rodrio - (11.140)
2 3 Po

The full energy of an accretion is obtained asrésailt of integration on the whole
array of substance:

I 2.5 1/3
16°Gpere | ( P+
E, :J'dEtdr10 :TOOH— -1|.
% Po

The time of a full accretion is determined at assibtionr,g = ry in expres-
sion (11.139). Energf; can still be written through the mass of a cenbady

equal to the mass of an accretion anea= 4 7pr? /3 = 4 1,13 /3, express-
ing in (11.141) density through it:

(11.141)
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2
E, = Cm (r—o —1}. (11.142)
5rg | Iy

The energy of an accretion, as it is seen fromld32), is increased with the in-
crease of the value of areg However aty/r; > 100 unit in brackets can be ne-
glected and the enerdy will not depend from the value of area:

_3Gn?
5r¢
Kant and Laplace considered a hypothesis, accotdinghich the Sun and

the planets were formed as the result of a condensaf initial gas nebula. On
this basis Helmholtz and L. Tomson have advancedirtipactive theory of the
Sun formation. Kolosovsky [23] gives a derivatiohtbe expression (11.143),

investigating the activity, executed in gravity ithgr a massgdm, falling from a
full-sphere surface in its centre:

X (11.143)

Gmdm

r2

dA=

r (11.144)

After a substitution of mass of a full-sphere the spherical volumdm and the
integration on a radius from 0 uptave obtained the value of activify, equal to
E; according to (11.143). In this derivation thera idefect, as the force is not con-
stant at the motion of a volume to the centre. &foee, the activity is necessary to
note as:

Gmdm

r2

Apparently, this inaccuracy is insignificantrat>> ry.

The expression (11.143) includes the radjuk is a final distance up to cen-
tre passed by an attracted particle. A visibleusdif the Surr; > r; and it deter-
mines a gas shell of the Sun. The attracted bodyemavith large velocity and
penetrates in the Sun on significant depth. Theeefthe transferred mechanical
energy to a central body is necessary to calcaiate final depth of penetration.
As r; is determined by mean denspy then, varying the last one, we will receive
different thermal energy of an accretion.

We adduce a calculated final (a§ = ro) velocity (11.138), time (11.139) and
energy of an accretion (11.142) with referencé&Sun in three versions below:

1) The radius of initial area of substance is ted&qual to the double semima-
jor axis of Pluto orbitrp = 1.2+13*m) and the mean density of a central body at
an accretion = 5000 kg/

2) Unlike first version densitg is increased in 2 times;

3) Unlike first version the radius of area is ddqoaa half of a distance up to
the nearest star - Centaurusrg = 1.2¢13° m). The obtained results of an accre-
tion of the Sun are shown in a table:

ddA=dFdr = dr.
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N lo, yo 3 Oy, t, E[, to, yo

m kg/m? | km/s | years J c kg/m?
1 | 1.2¢1¢° | 5000 | 760 127.7 | 3.4210" | 4.1410" | 2.7210%
2 | 1.210% | 10000 | 853 127.7 | 4.3010" | 5.2210" | 2.7210%°
3 | 1.210% | 5000 | 760 | 4.041C° | 3.4210" | 4.1410° | 2.7210%°
4 | 1.410® | 5000 | 760 | 5.1:10° | 3.4210" | 4.1410° | 1.7210%°

The, conditional temperature of a central bodyasmalised here, provided that
the mean thermal capacity of a substance is equakrmal capacity of wate€
=1 kcal/(kggrad).

As it is seen from a table, the energy of an amme,; reaches rather large
value. The final velocity of a falling substanceetqual to 760 km/s. Actually even
before reaching; = 5.5510° m (in the first version) the body will confront Wit
the Sun atmosphere, € 6.94510° m). Therefore the actual velocity of falling will
be less, however transferred energy to the Sunnatlichange the value. The ac-
cretion will be completed for 127.7 years, and tiean temperature will exceed
40 million degrees. With the increase of dengityn 2 times (version 2) the en-
ergy of an accretion will increase at 1.26 timelse Thcrease in 1000 times of an
accretion area (version 3) results in the incrae#sime of an accretion up to 4
million years. In a table there is version 4, wheueh value of initial densitg,
areas is given, at which accretion will proceedilboh years. It follows from
shown versions that the time of an accretion cag waer a wide range and the
energy of an accretion in the considered statermanbre conservative.

N.A.Kolosovsky [23] gives timing, for which the exgg of an accretion will
be radiated by the Sun. Full radiation of the $un 3,8610°° W calculate on the
basis of measured quantity of heat obtained bytiieof an earth surface. Then
the time of radiation of the Sun the energy of egretion:

t, = E/L = 0,8910" ¢ = 28 miillion years

As the age of a Solar system is supposed to bd @mbabillion of years, it forms
the basis for an inference about the existencehafr@nergy sources of the Sun.

However there are circumstances, which are nontatt® account by con-
sidered centrally symmetric statement of an aameproblem. The actual accre-
tion happens no symmetric, that, as our calculationder the program "Galac-
tica" have shown, results in the formation of astabce, circulating along the
closed orbits. As the result of collisions, thetjgée can lose the orbital velocity
and be attracted by a central body, so that theedon happens not for 127.7
years, as is obtained for version 1, and is steetdbr long years.

In a solar system the accretion was not finishédglanets, satellites and as-
teroids are covered with impact craters, firebdllse large objects, such as mete-
orites from time to time, penetrate the Earth afshese. The recent falling frag-
ments of Levi-Shumecer comet on Jove are a comgndn this connection we
consider the conditions, at which the energy of @adenn accretion of the Sun
would coincide with its radiation.
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The expressions (11.138), (11.139) and (11.141)oatained for the sub-
stance distributed with density in area with the radiug, which is going in mass
m. Let’s consider a problem, when the substancestsilouted with densityy, in
area with the radiusy < ro. Then after an accretion of substance made inrlan o
with the radiug,, the particles found at the distarrgg> r,o will be besieged on
a central body. The process of an accretion isritest by the same expressions,
but in the expression (11.141) insteadthere will berq;

E (11.145)

_167Goirs (o ),
15 Po '

It is the energy of an accretion of substance niadee orbr .
Substituting (11.138) in (11.139), we will recoltettime of an accretion as
follows:

3 0 1/3 0 1/3 0 1/3
t = (_fj (_fj -1 +arctg (—fj -1/ . (11.146)
871Gy |\ Po Po Po

As we can see, the time of an accretion does rperdkon the value of area,
and is determined only by ratio of density: initeaid final. That is in considered
statement the external layers simultaneously agprpkace, where they must con-
front with a central body, and the confluence hagpastantly. It is stipulated by
the fact that with removing a particle from the trerof area, the force of action on
it, and consequently, and acceleration are incekdse to increase of the mass of
the substance internal volume. So, according tal1@3), with allowance for
masses (11.134) of internal layers the acceleratianparticle at the initial radius
ro1 is equal to

_ AiGpy
3
i.e. the initial acceleration of a particle is poofonal to its removing from the
centre.

In central symmetric statement we summarized thi®raof all remaining
particles on a considered particle and have redetive force (11.129) action of
substance in a volume with the radiyg However besides the universal action
there are local interactions, during which the eltxated particles direct to each
other and merge. From numerical calculations oéegretion at different quanti-
ties of particles and different forms of areasiséen, that the accretion at the be-
ginning starts in a rim: at the cubic form in tield of main diagonals the multiple
centres of an accretion will be formed. More mas$iwedies swallow more small-
valued. Then the most massive, merging, form araebbdy, to which then for a
long time the remaining bodies aim, which remaiired rim because of small
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velocity of motion. So, the actual accretion hagpenntinuously in the whole
volume and the energy of an accretion is reseraeseparate fragments. There-
fore, the full energy of an accretion will exceéeé wvalue, calculated in a solution
of a spherical accretion. To decide how much léinggeexcess is, it is necessary to
conduct the further numerical researches of aretiocrprocess.

By the results of a spherical accretion we willleage the mean energy of an
accretion ad\ = E/t. At large valuesd/a,) expressions for energy (11.145) and
time (11.146) become simpler:

1/3
_16m°Gpir ( Pi J o [37

E, . (11.148)
15 Po 3260,
Then mean energy of an accretion:
5/3 5/6~15..5/3
N = 64/2(0,75)'% o5/ °G*°m | (11.149)

153771/6

The given expression is recorded depending on geofkthe aregs, and massn

of a central body, and the initial radiug is eliminated. For the considered earlier
values of densityy we will calculate the power of an accretion foe $un by this
formula

0, kg/nt N, W

2.72¢10' | 3.2¢107
2.72¢10'° | 1.0.10°
1.71.10% | 6.9.13*

wNR|Z

As we can see, the energy of radiation of the $un 8,8610°° W) is inside
the range of a rated power of an accretion. Thtitegpower, allocated by the Sun,
could be filled up due to an accretion, if there actual values of mass of sub-
stance acting on it. At velocity of an accretign= 760 km/s the influx of sub-
stance per one year

m, = il =4.2410% kglyear
05

It makes 0,7 % from mass of the Earth. On evaluatibe influx of meteoric sub-
stance on the Earth makes 5*k@/years [7]. If to consider that the flow of mete
oric substance in a Solar system is stipulatechbyattraction of the Sun, and only

those meteorites fall on the Earth which are opgeal by its sectiorrRZ , the
annual influx of meteoric substance on the Sunbeaappreciated by value

m, = 5004w I(7/R2) = 121107 kglyears,
whererg is the distance of the Earth up to the SRis the radius of the Earth.
Obtained value is times less than the necessane @ the influx of a mass to
maintain a stable radiant emittance of the Sun.

The made calculations show, that the power of ametion can be rather
large at the formation of the Sun, but is not sigfit (according to the of observa-
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tion) for maintenance in a stable condition ofhieat storage. The centrally sym-
metric model of an accretion gives the underesshatlues of the power of an
accretion and the further researches of this psoass necessary to straighten out
the initial reserves of the Sun energy and to date a role of other energy
sources.

We will note an interesting outcome, following froan problem about a
spherical accretion. It follows from (11.135), ththe radial velocity of a sub-
tended substance is increased in accordance wittoaghingr; to a radius of an
accretionr;. As we have already repeatedly noted, the resdoltsot depend on a
direction of the integration, therefore they canapglied to a retraction of a sub-
stance, for example to explosion of the body whih tadiugy. If at the moment of
explosion the velocity of body particles is subgecto the law (11.138), i.e. the
same one as at the moment of an accretion, theeamhing by particles the dis-
tancesr; > r¢ their velocity will be determined by expressiond .(135). Therefore,
the velocity of particles during removing from thentre of the explosion will
decrease and, reaching the radiesr o, will be equal to zero.

The obtained result is completely natural, as atrétraction of the substance
it moves against a resultant gravity and is brokenhe theories of the extending
universe and "of large explosion” the velocity afticles removing from the cen-
tre of explosion grows. These theories are basdtieaxplanation of "reddening"
of galaxies light by action of Doppler, accordimgwhich (see formula (8.75)) the
frequency of light of a removed source decreassst i seen, the given explana-
tion contradicts the laws of a nature: if thergtiavitation the velocity of removed
objects should drop. " The Reddening " of lighstipulated by the other reasons.
The universe was not born by the explosion ancetieno basis to consider it the
extending one. In this plan, the works of the Fhnastronomer Toyvo Jaakola
about the equilibrium universe [95] are represeitiggtesting.
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DEFINITIONS OF BASIC CONCEPTS

Definitions of concepts and some consequenceswoitp from them are be-
low submitted.

All consists of two things: the ambient world andl&scription.

The ambient worlds a part of everything that does not depend orptire
son’s reasoning.

The description of the ambient worilan understanding, explanation of the
world around, i.e. its conceptualization.

The knowledgeds the understanding about the world around, wkighnot
change with the passage of time.

Truthis the knowledge, which help the people’s actgtio of operations of
the person correspond his intentions.

The truthis knowledge, which the man uses at his activity @teive results,
which corresponds, to his intentions.

The basic part of the knowledge, which plays thpdrtant role always or at
the certain moment of time, usually is acceptettah.

Scienceis the area of human activity, directed for oltadnthe new knowl-
edge about the ambient world.

The theory is thedescription of objects properties of the ambientley of
the methods of human activity and their results.

The timecharacterizes a variability of objects and is daieed as the result
of comparison the changing of objects with the geaof a standard body or ob-
ject.

Time of existence, time of life, duration of thegplomenon or object is quan-
tity of cycles of the standard change, which isieajant to the change of the con-
sidered object or the phenomenon.

Instant in a change of object is a binding of satage of its change to a cer-
tain stage or a cycle of a standard change.

Time interval between two different stages of objetange is quantity of
cycles of the standard change, which have occiretdeen these stages.

Mathematical timas the result of comparing the changes of objefts sta-
bile cyclical change of the envisioned measureratamdard.

The mathematical time is used at the theoreticatrijgtion of the ambient
world.
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Size of object (bodydf object (body) is the result of comparison apasing
the standard on object; it is expressed by quauwtitgtandards or quantity of
shares of the standard, which can be imposed, jectob

The size of the object is determined in three nilytyzerpendicular direc-

tions, which in accordance with decrease are nataadth, width and thickness.
The name of size of object may be adhered to acaérheight (depth); to a
horizontal: width (thickness); to the parties ghli: breadth, a longitude, etc.

Size of an intervabetween objects is the result of a comparisoradnpm-
modation of the measurement standards betweentspjéds expressed by a
quantity of the measurement standards or theispart

The intervals between objects are situated in threwially perpendicular di-
rections.

The sizes of intervals are called distances.

Spaces a combination of objects and intervals betwibem.

This physical determination of space is necessargistinguish from a word
"space" used in mathematics, poetry, fantasy amer @reas of human activity.

Mathematical spacis imagined coordinate system, in which three nersb
fix the position of points.

The coordinate system should be considered by angynm of mathematical
space

The system of linear and mutually perpendiculaisafecoordinates is called
Cartesian.

Mathematical space is used for the theoretical rggsmmn of the ambient
world.

Velocity of motion of one object relatively the other isfeange of a distance
between them per the unit of time.

The velocity characterizes the motion of an objetitive to the second one.
The same object in relation to several ones can Hdferent velocities.

The inertial systenis a imagined coordinate system, which moves witho
acceleration, i.e. on inertia.

Accelerationof an object motion is the change of its veloaityelation to an
inertial system per the unit of time, provided thathe initial moment of meas-
urement the velocities coincide, and the changeetufcities is considered for infi-
nitely small period.

The acceleration of motion of object characteritgsnotion irrespectively
of the other objects, i.e. the acceleration isdtve characteristic of the object (if
to neglect dependence on a choice of inertial syst&his property of accelera-
tion is mathematical. At measurement of accelenatistead of mathematical co-
ordinates and time the actual measurement standérgsgth and time are ap-
plied, and instead of an inertial system the rdgéat is used, for example, the
Earth surface, which moves with acceleration. Theasared acceleration is ex-
pressed in relation to the used measurement stdsdar
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Action of one object on the other is an ability of aneaibjto move the sec-
ond one or to change its motion, i.e. to give amegion to the second object.

If there is no action to the object that it hasawzeleration, i.e. it rests or
moves rectilinearly and is uniform (the first lafvroechanics).

The forceof action of one object on the other is a charastte of action, ex-
pressed in change of properties of the third obj@bich counteracts the interac-
tion of the first two ones.

For example, the spring, which is located betwesdyland Earth surface at-
tracting body, reduces the length on magnitdtlewhich characterizes the force
of action of the Earth on the body.

The force is directed along the acceleration otthey.

The interacting bodies have opposite directed acatbns.

The force of action has the relation to two bodas] its magnitude is the
same. From here, the forces of interaction of twdidés, which at the description
of interaction by the person mentally are appledadies, are equal on the mag-
nitude and are opposite on a direction (the ttam &f mechanics).

Massof a body is a quantity of standard bodies, wtdtlaction are charac-
terized by some acceleration, drive the same chahpeoperties of counteractive
body as the well as considered body.

For example, the Earth acts on a stone and onastmnekights with identical
acceleration. The mass of a stone is equal to guahtity of standard weights,
which deform a spring that counteracts their fgllion the same magnitude, as
stone.

Mass of a body, in other words, is quantities ahdard bodies, which at ac-
tion are characterized by identical force, getdhme acceleration as the body.

At action on the standard (kg), which is charazestiby acceleration 1 mM/s
the change of counteractive body is accepted fitrofifiorce F in 1 Newton (N).

The action on the standard, characterized by thela@tionw m/<, is also
determined by the magnitude of force

F=w.

The action on a group ofi standards, which is characterized by acceleration
w m/<, is described also by force
F = mw.

At actions on body and on a grouprofstandards, which are characterized
by identical acceleratiow, the force of action on the body is equal to

F = Mw (the second law of mechanics).
It follows from determination of mass that it doest depend on a kind of ac-
tion.
There is no gravitational or inertial mass. Theybbds one mass, which is in
accordance with its determination.
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Only those objects have mass, which can be actedcan be accelerated.

The particles, which are not acted, for examplet@iograviton, neutrino
etc., should not be given a mass.

Mass of body is a factor of the conformity betwelea force of action on a
body and its acceleration, which shows in how mames the acceleration of
body is less than the acceleration of the measurest@ndard at identical on force
action.

The force of action on a body is the acceleratiba body, but expressed in
other units.

The connection between the force and the accederatin be only as = mw
and there is no other relation of force to accéiena

The laws of mechanics are not the laws of natimey are the

consequence of an adopted method of the interad@saription.
The laws of mechanics are identical to any intésast They cannot be
changed without change of a manner of the interastiescription.

Work of force F at moving body on distanatl s multiplication of dis-

tancedl on force projection to idA = F dl .

Potential energwf interaction of bodies is the value, equal te Work with
a converse sign.

Kinetic energyof a body is a half of multiplication of a body ssaon square
of its velocity.

Electrical chargas a force of action between uniformly electrifibddies,
located at a distance in one unit of length.

The electromagnetiwave created by charged or magnetized body isia-var
ble action in each point remote from body whicH vébt other charged or magne-
tized body placed in it.

The fieldis a mathematical term for a designation of disitiobn of any func-
tion A at the spatial coordinate systexry, zat an instant, which is notedA (x, v,

z, 9.
Electromagnetic fields a mathematical term for a designation of therat-
teristics of electromagnetic action, for exampleglectrical intensitye(x, vy, z, %.
Gravitational fieldis a mathematical term for a designation of tharatter-
istics of gravitational action, for example, thetdbutions of acceleration of Earth
gravitationg(x, vy, z, %.
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EPILOGUE

We have analysed the basis of mechanics: time espaeed, acceleration,
mass, force also have determined their essenceeStiame and mass cannot de-
pend on speed of motion, therefore, the introdaatibsuch relation in the Theory
of Relativity was an error.

We were defined with knowledge of the world: thesean outside ambient
world and its description. We invent the descripti@and the outside ambient
world does not depend on our reasoning. This mos#illows simply deciding a
problem of reality of various theoretical represgioins. Everything, which is in-
vented by imagination, is unreal, i.e. it is nodgent in the outside ambient world.
There are no substations of a type: space, timssniarce, energy, field, ether.
Mass cannot pass in energy, and time in substafbere is no spatially-
temporary continuum, there is no curvilinear wotltere was no "Big Bang" and
there is no extending universe.

We come to a conclusion, that many constructionsedern physics are the
curved description of the ambient world. The laagévity off correcting the mis-
takes and creating the new description is neces¥éeyhope that it will be con-
structed on the unhypothetical base. The physwiahses will not any more be
the convention of sacral positions, unintelligileleen for devoted people. They
will give people the precise and clear knowledgehaf world, which will allow
them to organize the life consciously, purposefaltg with optimum.

We are sure, that in the world there is nothingraforld and inexplicable.
There is much unknown and interesting to us. Weehbpt together with a rela-
tivity theory, there will leave for inexistence vaithe mystical perception of the
ambient and a prime target of a society will becaoshing to new knowledge of
the world. The nearest problems in a direction ofiom to this are: obtaining the
superluminal particles and physics revision, stgrtwith E. Rutherford experi-
ments. Apparently, Ernst Rutherford in 20-ht ceptwas the last scientist, who,
like Isaac Newton, trued not to introduce the hiaptital constructions in the sci-
entific results. For the description of phenomemacall to use the unhypothetical
approach, which we here tried to demonstrate orexiaenples of various interac-
tions. The ways, considered in the book, of acaélem of particles up to super-
luminal velocities we offer to the future physisigixperimentalists and below we
present our appeal to them, published in two désgidcientific journals:
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1. Smulsky J.J. Appeal to Physicists-Experimert&lis Apeiron. -1998.-
Vol. 5, N.1-2.-P. 107,

2. Smulsky J.J. Appeal to Physicists-Experimertilis Galilean Electro-
dynamics.- 1998.- Vol. 9, N.5.-P. 88.

Lately, from the moment of the Russian edition loé ook, | discussed
modern scientific understanding of the world witamg colleagues. These discus-
sions have convinced me, that unhypothetical mettiatiudying of the world will
allow us to get rid of many lacks and mistakes. Waeand there are mistakes,
and what they? As the answer to this question taorattaching my report at the
conference “The Main Mistakes of Modern Science”.

APPEAL TO PHYSICISTS-EXPERIMENTALISTS
Dear colleagues!

| want to attract your attention in acceleratidretementary particles up to
superluminal speed. There are no obstacles fohieasuch speeds, except out-
look stipulated by a relativity theory.

The essence of STR is obstacle in the followingndture objectively exists
the action of bodies against each other. The ele@tgnetic interactions depend
not only on a distance between bodies, but alstheim relative speed. The de-
scription of interactions in STR is constructedtbat equations for interactions of
motionless from each other bodies, and the equafmminteractions of relatively
moving bodies were identical. Therefore, to sattbfy empirical data, it is neces-
sary to transform parameters at rest to the pasxmat motion on known relativ-
istic transformations.

If the interactions between moving bodies to dbsg¢ras they are, that is
dependent from the speed of their relative moticamsformations of space, time
and the mass are not necessary. It is first.

Secondly, the founders of STR, which carried albggether, have run into
fallacy, assuming, that they create not the desonmf interactions, but create the
world, in which the material bodies are subjectedhanges according to relativis-
tic rates. And as the relativistic transformatiatssuperluminal speed became
imaginary, in STR superluminal motions have prdbithi

But a relativistic description of interactions istrthe only possible one. Ele-
mentary descriptions, based on classical physiase tbeen published by G.I.
Sukhorukov and co-authors (Russia) [64], T.G. Baamas co-authors [83], C.W.
Lucas, Jr. (USA) [102], and many others. Oleg Dindenko, Professor of Physics
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at West Virginia University (USA) in his book [98jas presented a method of
retarded fields, whose origin can be traced to élideaviside, which is capable
to replace completely the SRT.

Due to the researches | have developed a loagtgrmethod of the de-
scriptions, based on the expression for force @fattion of two bodies, depend-
ent from a distance and a speed between bodiesufiegluminal motions exist in
nature: jets of substance and separate fragmeafies in far space move with
speeds, exceeding the speed of light in some tithesspace particles with super-
luminal speeds are introduced into atmosphereetrth. | call to receive super-
luminal motions on the Earth.

| ask the organizations and scientist to take ipdttis activity. Many organi-
zations have all necessary to speed up the partigleto the superluminal speed
according to the scheme, offered in my foob. Ifessary, the scheme of experi-
ment can be changed and adapted to necessaryionadit offer also to use the
methods, developed by me, for calculation of basstsmd nuclear transforma-
tions. They are more exact relativistic ones.

Why does the Earth need the superluminal motions?

1. They are new drivers for intersidereal rockets.

2. It is the high-power tool in antiasteroidal {@etion of the Earth.

3. These are new ground technologies.

4. These are the new purposes and perspectivezafakind.

THE MAIN MISTAKES OF MODERN SCIENCE

The Report at VIII International Scientific Confare: Space, Time and Gravitation.
August, 16-20, 2004, Saint-Petersburg, Russia.

J.J.Smulsky

Institute of the Earth’s Cryosphere of the SibefBranch of the Russian Academy of Science, 625000,

Tyumen, P.0O.Box 1230, Russia.

1. THE CONCEPTION OF THE WORLD AND WHAT THE REAL
WORLD IS

Let's address to Homer. Achilles throws a javelinTrojan's Aeneas, son of
Anhis, which, having pierced periphery of a shiefilicks into the ground.
Achilles with surprise exclaims:

"Gods! By my eyes | see a great miracle:
Spear in front of me lies on the ground; but doses the man,
246

Against which has thrown, which | desired to ovestia
Truly and this Anhisid to deities Olympic is kind!"

The reason of rescue from inevitable, in opinionAchilles, destruction of
Aeneas the Achilles sees in operation of godss hadt a metaphor or Homer's
literary reception. Reading ancient authors, we st the gods controlled the
winds and a rain, gave us light of the Sun andhefNloon, directed people and
supervised their activities. Now we consider thideas naive. We know what air
is and what its structure is, what the reasonsrofedocity are and when air be-
comes wind or even a terrible hurricane. Our kndgéeis so reliable, that we
undoubtedly consider mistaken the ancient peopisien of the world.

In this connection there are some questions. Are dur conceptions of the
world? Which of them will not be found naive aneétéfore rejected by our des-
cendants? Are there some true conceptions amongrag, which will never be
rejected? Can we find out our mistaken conceptidha® may, let's reveal them
and we shall reject, and we shall not lead up tleéras to a shame before the fu-
ture generations.

There is a surrounding world round us. It is thg, she stars, the trees, our
house, the subjects in it and so on. These objéet®rld around are changed and
influence each on other. We investigate them, éxplhe reasons of objects
change, in this way we create the world understandi the ancient people in-
volved the gods’ power or demons’ ones for the axations the world, we ex-
plain everything with the help of forces, fieldsher, energy, space-time etc. As
we can see, the explanations and the understarafinfpe world constantly
change, but the world practically remains changeles

2. THE UNHYPOTHETICAL DESCRIPTION OF
ELECTROMAGNETIC INTERACTIONS

2.1. Interaction of the motionless electrified bodies and magnets

The modern physical understanding of the worlddsed on the Theory of
Relativity. The approach of the description of &lemagnetic interactions lays in
a basis of it. This approach consists that thel fitle space and time, which ex-
press interaction of bodies, are changed and defibrim dependence on relative
velocity of movement of interacting bodies. Whetkerit is?

Let's consider how the magnetic and electrifiedié®dnteract, being
based on those laws of electromagnetism, whiclreareived as a result of mea-
surements. The motionless electrified bodies withrgesq; andg, and the mag-
nets with magnetic chargé, andM, (see Fig. 1a, b) act one on other with force
according to expressions:

= zoaqzﬁ. E zﬂMleﬁ
™ v

le £ Ra ’ R3 (1)

Which name Colombos’ laws for electrostatic and nedig interactions.
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Fig. 1. As magnets and the electrified bodies auer

These forces are received as a result of measutenmémder action of force the
body will start movement and will get velocity There is a question: the moving
charged body, (see Fig. 1a) will act on motionless body with the same fort (
or force will be another? Unfortunately, in eleclyoamics of 18 and 19 centuries
for an explanation of interactions the concepteddfiand its determining values:

scalar ¢ and vector potentialA , intensitiesE and H , inductionsD u B and

other values was entered. And the problem of fofcateraction till now has re-
mained open. However all measurements of intenastaf bodies one on other

were carried out. Let's not use a field and itsies) and, using of measurements,

we shall define force of interaction between thevimg electrified bodies.

Interaction of motionless bodies Interaction of moving bodies

@% & G @/W

F, = Biot -Savart - Laplase's law = Law of Faraday induction
(second Maxwell's equation) (first Maxwell's equation)

Fig. 2. Than the interaction of motionless and mgwodies is defined?

With this purpose we shall consider interactioriha electrified body and mag-
netM. If they rest (see Fig. @), then one body do not acts on other, i.e. theefor
of interactionF=0. If the bodyq (see Fig. 2b) moves relatively magné¥l we
understand it that according to Biot-Savart-Lapkd¢awin the point of the mag-
net presence the magnetic field is induced. Thenetig field acts on a magnet
with forceF,. We shall reject this interpretation of actiondame shall leave only
result: the moving charge acts on magnet with fondech is defined by the men-
tioned law

F,= Biot-Savart-Laplace's law. (2)
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If the magnet moves relatively a chargg(see Fig. 2¢) we understand it
that according to the Faraday’s law of inductinrihe point of body the electric
field is induced. The electric field acts on a ¢eay with forceFs. Again we shall
reject this interpretation of action, and we shedive only its result: the moving
magnetM acts on the electrified body with force, which is determined by the
above named law:

F3 = the Faraday’s law of induction. 3)

So, three these experimental facts testify, thatodionless charge and they
interact when move from one on other. From here,ittportant conclusion fol-
lows: interaction of a charge and a magnet dependtheir velocity of relative
movement.

2.2 The Interaction Of The Electrified Bodies Moving One Relatively Other

Now we shall return to the answer to a questiorualnteraction of the mov-
ing electrified bodies. If the charged baglymoves with velocity relatively mo-
tionlessq; (see Fig. 3) that the three above-considered memants define their
interaction. The first component of fordg is caused by own interaction of
charged bodiek;.. Due to movement of a charggthere is an action on magnet
F», which is situated at the point of charmge It is the second component. As the
distance from the chargg up to this imagined magnet changes, the actioit on
changes also. The change of this action we shalemt the movement of the
magnet, which is disposing on the chargfeplace. So, the third componeRi
will present action of a moving magnet on a chayge
Additional actiong=, andF; depend on velocity of movement and as we already
mentioned, it is written as experimental laws Blgivart-Laplace

(dH :|—3[drx Ii]) and induction of Faraday(= _1d® ). For infinitesimal
R°c c dt

sizes of a charge and a magnet and at distributexbordinates the characteristics
of action these experimental laws are accordirgggond

(rotH = ia—F +4—npv) and first ((roti =- ﬁa—H) Maxwell’s equations.
cg, ot ¢ a, c ot
After exception intensitid from them it is received differential equation fote-

raction force of the moving chargge on motionlessy, as:

AF L OF _4m,| 1 9(p)
¢ o> g |¢ ot

where ¢, = c// ue is speed of light in the considered media, arid density of a

+gradp}, (4)

charge, which is defined from the conditigpn = .[pdv .
\Y
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First Maxwell’s equation 1ot —=—"~—
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Fig. 3. How the force between moving bodies aréndef

As a result of the decision of this differentiaation we have received the
following expression for force

IE - qqu(l_ﬂz)ﬁalz ’
5{ R? - [Bx Ii]z}

(%)

where B =74/c, .

This force describes the all electromagnetic imtiioas. And as it is seen, the
force depends on velocity of movement. If the vitfocomes nearer to speed of
light (S - 1), the force tends to zero. Naturally, the movemdnthe charged

bodies does not lead to the change of space, titherass as it is accepted in the
Theory of Relativity. These positions of the TheafyRelativity are erroneous
and should be rejected.

3. MISTAKES OF THE BASES OF THE GENERAL THEORY OF
RELATIVITY

By the end of 19 centuries in physics the explamatif the world phenomena
was formed with assistance by ether and the fleldas supposed, that waves of
light are propagated in ether. The smallest pagidf substance consist of ether.
The charged bodies and magnets create around ofséhees the appropriate
fields, which then act on other bodies. Became temhe idea to present gravi-
tational action as a field. Then all interactionsinature will express the same as
fields. It will be possible to create the unite@dhy of a field and thus as it was
supposed, all picture of the world will be consteat

It is necessary to pay earnest heed. Physicistsith® aspired to create, con-
struct a picture of the world, i.e. to explain fhemselves the behavior of the ob-
jects of world around. However, for other peoplis #xplanation became under-
standing. The world around began to be perceiveliaterpreted by people in
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invented images. As these images were represestegahones, the subsequent
generations perceived them as objects of worldrato80, we shall note that ether
and the field are the concepts entered for an eafitan of the world. These are
dreamed up objects.

Let's continue consideration of gravitational acti the Special Theory of
Relativity the electromagnetic interaction of badimoving one relatively other
was explained by changing of space-time dependemceahis connection there
was a logic contradiction as it was not requiredcsptime transformations for an
explanation of gravitational interaction. The dedio create a uniform picture of
the world was so strong, that final speed of gedidh propagation, equal to speed
of light was accepted. By analogy to the descriptibelectromagnetic interaction
the description of gravitational interaction relaty moving bodies was con-
structed. In addition, this description of gravitagal interaction was submitted in
the depersonalized four-dimensional curvilinear rdowtes. So there was the
General Theory of Relativity (GTR) as the new inmgempletely imagined on
the basis of mathematical concepts. These imagigects of GTR are do not
like to one of the objects of world around. Therefthis science for the person
became non-comparable to world around. Many positiaf GTR are not joined
to that, which the man sees in world around. GTRilisof logic contradictions. |
do not doubt that contradictions would be les$puinders of the Theory of Rela-
tivity as ancient men the electromagnetic and g¢méiohal interactions would ex-
plain by actions of gods.

For confirmation of GTR the three possible phenacaneere involved: peri-
helion precession of Mercury, a deviation of ligiid change its frequency at pas-
sage near gravitating body. | think that it is reseey to be guided by an unshaka-
ble rule:the ungrounded statement should not even be checket confirma-
tion. The unique “basis” for GTR is a desire to credite tiniform theory of a
field. But the world around is not accommodatedian’s desires.

We may not follow above to the formulated rule avelmay consider this de-
sire as the basis. The following statement the @&TfRat the speed of gravitation
propagation is equal to light speed. This idea e@ginuously checked from the
moment of the formulation by Newton of the univéisav gravitation. And each
time it was rejected by more exact solving of thheations or taking into account
of additional action not taken before into accdumtly. The most difficult calcula-
tion of gravitational interaction - the calculatiohthe Moon movement was ex-
ecuted. On its basis Laplace in 1787 has comectmelusion, if gravitation speed
is final it should exceed speed of light in 100limi times.

Apparently, | have walked on all chain of statersdBTR, and have come to
a conclusion: any of them has no the bases. THgsasmaf some these statements
is given in my works and, at desire, everyone nmagdnvinced of it independent-

ly.
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4. THE IMAGINED COMPREHENSIONS OF A MACROCOSM

So, as for as the Special Theory of Relativity thacepts and positions of
GTR are erroneous and should be rejected. We shabider most popular of
them.

Gravitational wavesThey follow from GTR. If force of gravitation betern
two bodies would depend on velocity, such waveslainelectromagnetic, might
exist. But the bases for this purpose are not pte3éerefore the gravitational
waves do not exist. | call the researchers, alrhalftcenturies engaged in their
detection, to try to understand the above anabsisto refuse from searching of
what does not exist.

The closed and open universe, spatial "wormholeahsition through zero-
hyperspace etd hese imagined objects are caused GTR. As alrehdyd noted,
GTR are formed by two positions: 1) gravitationeghés equal to speed of light;
2) the interaction and movements is consideredoim-flimensional curvilinear
coordinates. The identification of curvilinear cdimrates with some substance also
has caused appearance of the above-mentioned iedagijects. Here | shall note
that the paraphrasing of the GTR interactions ictilieear Cartesian three-
dimensional coordinates will not result to appeeeanf these objects.

So, such universes, "wormholes" and zero of hypees@are not present in the
world around. They need to be thrown out from gdtfienuse and to be as more
soon neglected. Their existence in household udeigght with psychological
illnesses and traumas.

"Black holes' It is illogical construction of GTR. The essenmfethis im-
agined object consists in the following. So aslibdy has departed the Earth on
infinity, its velocity, according to the Newton’aw of gravitation, should be not
less than 11.2 km/sec, and from the Sun - 500 kanisés possible to imagine
body with mass and radius at which escaping velositl be equal to speed of
light: ¢ = 300000 km/sec. Body with such parameters haea hamed the "black
hole". It is supposed, that light from such bodyruat leave to the far observer,
and therefore this body will been looked as a blaake on a roof of heaven.

The concept of the "black hole" is offered in framoeks of GTR. Here again
there is a logic mistake. At approach of body vijyoto the speed of light the
force of action on it follows to zero (in interpagibn of the Theory of Relativity:
the mass follows to infinity). Therefore the bodythwight velocity will not be
slowed down and will leave the body, which escapiatpcity, according to the
Newton’s law of gravitation, is equal to speedight. That is, within the frame-
work of GTR the "black holes" are in principle ingsible. If they were really
found out, it would confirm the Newton'’s law of grtation.

So, the bases for proposing of concepts of "blaidk"hare not presented. To
astrophysicists, which occupy of searching of "klaole", | advise to take into
account these arguments and to direct their endeawvstudying of real properties
of new found out objects.

The expanding Universe and Big Bafdne object, for example the galaxy, is
more distanced from our Earth, the smaller frequdras its spectrum of light. It
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is spoken there is "reddening"” of light with incsey of distance up to its source.
It is known, that at movement of a source of lightfrequency changes according
to the Doppler’s formula. If the source leaves tbeeiver there is a reddening of
light. Therefore at an explanation of the redderofgdjght of far galaxies by the
Doppler effect it is follows that we are in the tamfrom which in all directions
Galaxies leave. The conclusion about the expandimgerse and as consequence,
that at some moment of time the Universe was delten one point and the Big
Bang has resulted in its expansion, follows fromehe

As we see, the concepts of the expanding univerdeBég Bang directly do
not follow from GTR. However, due to the usual neethof GTR of studying of
the world as proposing of hypotheses and constmgton them explanations of
the world, there was possible an appearance of th@sdoxical designs.

The expanding Universe and Big Bang contradict manyknowledge of the
world. We shall stop on one of contradictions. Aslies are attracted to each oth-
er, then at removing from each other their relatietocities are decreased. This
interaction of bodies can be described by mechapivargyE. It is equal to the
sum of kinetic energyl and potential energ. At increase of the distance be-
tween bodies their potential energy is increased, kinetic due to reduction of
bodies' velocity is decreased. The increase Tharekipg Universe and Big Bang
The object, for example the galaxy, is more digtanitom our Earth, the smaller
frequency has its spectrum of light. It is spokieer¢ is "reddening” of light with
increasing of distance up to its source. It is knpthat at movement of a source
of light its frequency changes according to the Peps formula. If the source
leaves the receiver there is a reddening of ligherefore at an explanation of the
reddening of light of far galaxies by the Doppléeet it is follows that we are in
the centre from which in all directions Galaxieave. The conclusion about the
expanding Universe and as consequence, that at smmeent of time the Un-
iverse was collected in one point and the Big Bhag resulted in its expansion,
follows from here.

As we see, the concepts of the expanding univerdeBég Bang directly do
not follow from GTR. However, due to the usual neethof GTR of studying of
the world as proposing of hypotheses and constmgton them explanations of
the world, there was possible an appearance of tha@sdoxical designs.

The expanding Universe and Big Bang contradict namyknowledge of the
world. We shall stop on one of contradictions. Aslies are attracted to each oth-
er, then at removing from each other their relatietocities are decreased. This
interaction of bodies can be described by mechapivargyE. It is equal to the
sum of kinetic energyl and potential energ§f. At increase of the distance be-
tween bodies their potential energy is increased, kinetic due to reduction of
bodies' velocity is decreased. The increHsand decreas& occurs so, that full
mechanical energy remains constant

E = I1 + T=const. (6)
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This position, the law of conservation of mechaha®ergy, is a basis of our

civilization. All engineering, the heavenly mechasiastronautics etc. are based

on this law.

At interpretation of a reddening of light by Doppkffect it is received that
with removing of object its velocity grows. Therefpthe galaxies located on the
big distances have the big both kinetic and paatetiergy, i.e. their full mechan-
ical energyE with removing from the Earth grows. Thus, in théeading un-
iverse there is a continuous increase of mechaaitaigy.

If scientists did not have sample as the paradbXicaory of Relativity, they
would act absolutely in another way: «As the inseeaf mechanical energy in the
closed system is impossible, the reddening of laftfar galaxies Doppler effect
does not explained"”, - to such conclusion would eatientists. And for past 70-
80 years other explanation of the phenomenon "mEddeof light" would be
found.

5. THE CREATION OF IMAGINED OBJECTS INSTEAD OF
STUDYING WORLD AROUND IS THE MAIN MISTAKE OF MODERN
SCIENCE.

So, the extending Universe and Big Bang there am@neous conceptions
about the world of modern science. We have stojppetthe objects created within
the framework of the Theory of Relativity. Howevem methodology of the
Theory of Relativity the quantum mechanics, thethef a nucleus, the theory of
elementary particles and modern astrophysics wenstaicted. In their frame-
works the many imagined objects were created, whrehaccepted as objects of
world around. By these objects the explanation @sanand a macrocosm is con-
structed. These objects do not exist, and a magaleysical picture of the world is
a fruit of human imagination.

I think many with me will agree that an explanatmfithe world by contem-
poraries of Homer by the actions of gods is momaetive. Zeus, Hera, Poseidon,
Hephaestus et for us are more nice than the ether, a fieldcefiame, Big Bang,
the captivated quark etc. Actions of gods we mi@diot as people have created
them on the similarity. The behaviour of the crdateodern physical objects in
any logic frameworks is not stacked. To not amazedescendants with the nai-
vety, let's more soon get rid of such fantastidaxation of the world.
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Appendix 1

THE PROGRAM IN MATHCAD ENVIRONMENT OF
INTEGRATIONS OF THE MOTION EQUATIONS
FOR ELLIPSELIKE ORBITS

Initial parameters

rn:=1.0000:- initial radius of an integration;
n:=10 - quantity of integration segments;

b :=1.21996- radius of apocentre - final radius of an inteigratls set approximately, anc
calculated from a condition of equality to zeraadial velocity.

all:=-.70 bt '=.70
Finding of an apocentre radius

2
(
root| | 1- bit[ (1- b?)exp 2ot 1 ,b| =1.21996726
b -2 A1- b
Evaluation of a step h of segments and other peteas
h=b-m i:=1.n j:=0.n j1:=0.n+1 ro=m

n 0

z:=m+ h,m+ 2-h..b erl::rjﬁh alizri—h

( 2
bto =/ (1- alf) bt0=0.7141  al:=2-allbt

Calculation of radial velocity

2
1- % (1- b?)exg 2zamotr[ L~ 1
z NZ-bt? J1- bf

bt

vr(z) =

Evaluation of the correction in an initial point rn

— 1 A rnz— 1
—  |\\InWm°=1+m

m

all 1+

2
1— bt 1- bt

Integration of time t and angular coordinates fi

1+

E ft(z) 1=+

Zr(z) vr(2)

2 2

f(z) = t,=3.177910 °  fij =3.177910

a a
i i

r. r.
dtqu ft(z)dz dfiqu f(z)dz vorjizvr<rj>
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Evaluation of the correction in apocentre

2 2
] (all+ - (vorn> allt 1
dflnH acos{ :

Prolongation of app. 1

g 2
dtn+ 17 df'n+ b

1+ all 1+ all
) A1- (bt)?
Summation on segments
it fi, =i+ dfi th g Styrde o fi =i e
vor =0 r b X ::rjl-cos< fji1> Yo ::rjl-sin<fijl>
Outcomes of calculations
all=-07 bt =0.7 m=1 b=1.22
vor, f|i1 X Ya df|i1 ti1
6.293410"  [3.1779107 0.9995| 31774107 | O 3.177910°
2 8816107 14797|  |9.300410° 1.0178]| |1-4479 15014
5022410 2.0831 05118 0.91 | |0.6034 2.1445
: - 25473 -0.8832 0.5969| |0-4642 2.6609
4.561710° 2.9455 "1.0671 0.2119| |0-3983 3.1227
4.928810% 3.3087 -1.0945 -0.1844 [0-3631 3.5612
0.347
~ 3.6557 -0.9857 0.5566 3.9971
5.0668 107
7 4.0028 -0.7519 ~0.8754 |0-3471 4.4507
4.98661 4.3711 0.3936 1.1081| [0-3683 4.9506
4675110 4.805 0.1108 “1.1928 |0.4339 5.5625
4082510 5.7342 1.0407 -0.6366 |0-9292 6.9282
- 5.7418 1.0455 0.6287 |7.599910° | 6.9395
3.058910°
5.857910"
Formation of an output matrix
Povoizall Po,l:bt Povzizvor0 P0v31:vorn
P0‘4::al P0v5::rn Po,e::b
Pj1+1,0::rj1 P1‘1+1,11:V0rj1 Pj1+1,21:f'j1 Pj1+1,31:X11
Pj1+1,4::yj1 I:Vj1+1,5::df'j1 le+l,6::tj1

Record of outcomes in the file R_7070.prn WRITEPRN "R_7070.prm) :=P
Plotting of the graphics

0.05

voryy Y.
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Appendix 2

INITIAL PARAMETERS OF TRAJECTORIES

AND MEANINGS IN FINAL
CALCULATED POINTS

Main symbols

All= a, Bt =4, Btc =S = (1 - )%
AIL0 = % Bto Fy; BtcO o = (1 —()?)°5 Br0 =Bo;
Al=a = zalﬁpz; ficl =g Tcl =fcl ; Racl =R, = Rac/Rp.

The index "cl" designates the parameters of claksigjectory:
for hyperbolic and paraboliax{ >= -0.5) ¢, and ty - angle and relative time at
final valuesR;
for elliptical orbits @ < -0.5) ¢ , , and R,y - angle, time and relative radius
at the apocentres.
Rr=R/R,; Vor= o, =ulv,; Vor0= 2 =uvlvg, Fi=g;

X = xIR; Y=y/IR,; dFi=4¢; T=t=tv,/R,.

At trajectories with Bt = Btc the floor level oftegration is equal to 1.001.

Numbers of trajectories correspond to numbersajéttories in tables of values
of all computational points [59].

Rr Vor Fi X Y dFi T
1. Attraction (Al1 < 0)
1.1. All = var
111.Al=-1

1.1.1.1. All= -100 Bt= .100 Btc#995
Al= -002 Ficl= 1.681 Tcl= .1117E4#0

.1000E+04 .8950E+00 .1680E+01-.1085E+03 .9941E¥P38E-03 .1117E+04
1.1.1.2. All= -100 Bt= .300 Btc#995
Al= -018 Ficl= 1.681 Tcl= .1117E40

.1000E+04 .8990E+00 .1681E+01-.1095E+03 .9940E*P33E-03 .1112E+04
1.1.1.3. All= -100 Bt= .500 Btc#995
Al= -050 Ficl= 1.681 Tcl= .1117E40

.1000E+04 .9070E+00 .1683E+01-.1125E+03 .9937E¥PB2E-03 .1102E+04
1.1.14. All = -100 Bt= .700 Btc#995
Al= -098 Ficl= 1.681 Tcl= .1117E40

.1000E+04 .9200E+00 .1685E+01-.1144E+03 .9934E*D3AE-03 .1086E+04
1.1.15. All = -100 Bt= .900 Btc#995
Al= -162 Ficl= 1.681 Tcl= .1117E40

.1000E+04 .9460E+00 .1693E+01-.1223E+03 .9925E*D@2E-03 .1057E+04
1.1.16. All = -100 Bt= .995 Btc#995
Al= -198 Ficl= 1.681 Tcl= .1117E40

.1000E+01 .0000E+00 - - - - -
.1000E+04 .9680E+00 .1828E+01-.2547E+03 .9670E+035E-03 .1033E+04
1.1.2. AL1=-0.2

1.1.21. All=-200 Bt= .100 Btc:980

263



264

Prolongation of app.

Rr Vor Fi X Y dFi T
Al= -004 Ficl= 1.822  Tcl= .1288E40

.1000E+04 .7760E+00 .1822E+01-.2485E+03 .9686E+0B7E-03 .1287E+04

1.1.2.2. All= -200 Bt= .300 Btc#980
Al= -036 Ficl= 1.822 Tcl= .1288E40

.1000E+04 .7820E+00 .1825E+01-.2513E+03 .9679EHMB5E-03 .1277E+04

1.1.2.3. All = -200 Bt= .500 Btc#980
Al= -100 Ficl= 1.822 Tcl= .1288E40

.1000E+04 .7960E+00 .1829E+01-.2552E+03 .9669E+881E-03 .1255E+04

1.1.24. All=-200 Bt= .700 Btc:980
Al= -196 Ficl= 1.822 Tcl= .1288E40
1000E+04 .8190E+00 .1839E+01-.2648E+03 .9643E+B81H-03 .1219E+04
1.1.25. All=-200 Bt= .900 Btc:980
Al= -324 Ficl= 1.822 Tcl= .1288E40

.1000E+04 .8610E+00 .1890E+01-.3135E+03 .9496E*PB6E-03 .1161E+04

1.1.26. All = -200 Bt= .980 Btc#980
Al= -384 Ficl= 1.822 Tcl= .1288E40
.1000E+01 .0000E+00 -

.1000E+04 .8700E+00 .2412E+01- 7452E+03 6669E}EEQE 03 .1149E+04

113.AL1=-3
1.1.3.1. All= -300 Bt= .100 Btc#954
Al= -006 Ficl= 2.012 Tcl= .1574E40

.1000E+04 .6340E+00 .2011E+01-.4264E+03 .9045E4+033E-03 .1572E+04

1132 All=-300 Bt= .300 Btc#954
Al= -054 Ficl= 2.012 Tcl= .1574E40

.1000E+04 .6420E+00 .2017E+01-.4318E+03 .9020E4+DB2E-03 .1553E+04

1.1.33. All= -300 Bt= .500 Btc:954
Al= -150 Ficl= 2.012 Tcl= .1574E40

.1000E+04 .6580E+00 .2028E+01-.4416E+03 .8972E+639E-03 .1515E+04

1.1.3.4. All= -300 Bt= .700 Btc:954
Al= -294  Ficl= 2.012 Tcl= .1574E40

.1000E+04 .6860E+00 .2061E+01-.4709E+03 .8822E+632E-03 .1455E+04

1.1.35. All= -300 Bt= .900 Btc#954
Al= -486 Ficl= 2.012 Tcl= .1574E0

.1000E+04 .7210E+00 .2259E+01-.6352E+03 .7724E¥834E-03 .1385E+04

1.1.36. All = -300 Bt= .930 Btc#954
Al= -519  Ficl= 2.012 Tcl= .1574E40

.1000E+04 .7180E+00 .2438E+01-.7625E+03 .6469E+B30E-03 .1391E+04

1.1.3.7. All= -300 Bt= .954 Btc:954
Al= -546  Ficl= 2.012 Tcl= .1574E40
.1000E+01 .0000E+00 -

.1000E+04 .6990E+00 .3238E+01- 9953E+03 9635E1-922E 03 1429E+04

1.1.3.8. Al10= -.300 Bt0O= .960 BtcO954 BrO= .100
Al= -576 All= -288 Ficl= 1.844 Tcl A416E+02

.1042E+02 .7540E+00 .2413E+01-.7772E+01 .6936E+8A0E-01 .1465E+02

1.1.3.9. Al10 = -.300 Bt0O= .960 BtcO 954 Br0= .200
Al= -576 All= -288 Ficl= 1.844 Tcl A416E+02

.1042E+02 .8890E+00 .1785E+01-.2214E+01 .1018E+D20E-01 .1215E+02

1.1.3.10. Al10 = -.300 BtO= .960 BtcO#954 BrOo= .250
Al= -576 All= -288 Ficl= 1.844 Tcl A416E+02
.1042E+02 .9790E+00 .1575E+01-.4379E-01 .1042E+0Q0OE-01 .1100E+02
1.1.3.11. A10= -.300 BtO= .960 BtcO =549 BrO = .280
Al= -576 All= -288 Ficl= 1.844 Tcl A416E+02

.1042E+02 .1037E+01 .1476E+01 .9860E+00 .1037E#020E-01 .1037E+02

1.1.3.12. Al10 = -.300 BtO= .970 BtcO#9854 Br0= .100
Al= -582 All= -291 Ficl= 1.848 Tcl A406E+02

.1031E+02 .7420E+00 .2413E+01-.7692E+01 .6864E+8A0E-01 .1458E+02

1.1.3.13. Al10= -.300 Bt0= .970 BtcO$54 Br0= .200

2

Prolongation of app.

Rr Vor Fi X Y dFi T
Al= -582 All= -291 Ficl= 1.848 Tcl 406E+02

.1031E+02 .9260E+00 .1666E+01-.9800E+00 .1026E4+D20E-01 .1246E+02

1.1.3.14. Al10 = -.300 BtO= .970 BtcO#9854 Br0= .243
Al= -582 All= -291 Ficl= 1.848 Tcl A406E+02

.1031E+02 .1026E+01 .1473E+01 .1007E+01 .1026 E¥0@0E-01 .1026E+02

1.1.3.15. Al10 = -.300 BtO= .980 BtcO#9854 Br0= .100
Al= -588 All= -294 Ficl= 1.852 Tcl A397E+02

.1020E+02 .7110E+00 .2603E+01-.8760E+01 .5234E+M0E-01 .1503E+02

1.1.3.16. Al10 = -.300 BtO= .980 BtcO#954 BrO= .199
Al= -588 All= -294 Ficl= 1.852 Tcl A397E+02

.1020E+02 .1015E+01 .1467E+01 .1057E+01 .1015E4020E-01 .1015E+02

1.1.3.17. Al10 = -.300 BtO= .987 BtcO#954 BrO= .100
Al= -592 All= -296 Ficl= .332 Tcl 3410E+00

.1040E+01 .3000E-02 .7190E+00 .7822E+00 .6847E#G90E+00 .7545E+00

1.1.3.18. Al10 = -.300 Bt0O= .987 BtcO#9854 Br0= .161
Al= -592 All= -296 Ficl= 1.855 Tcl A391E+02

.1013E+02 .1008E+01 .1471E+01 .1009E+01 .1008 EX0@0E-01 .1008E+02

11.4.All=-4
1.14.1. All=-400 Bt= .100 Btc917
Al= -008 Ficl= 2.298 Tcl= .2211E40

.1000E+04 .4490E+00 .2279E+01-.6506E+03 .7594E20487E-03 .2207E+04

1.1.42. All= -400 Bt= .300 Btc#®17
Al= -072 Ficl= 2.298 Tcl= .2211E#0

.1000E+04 .4560E+00 .2311E+01-.6745E+03 .7382E038E-03 .1959E+04

1.1.43. All= -400 Bt= .500 Btc#®917
Al= -200 Ficl= 2.298 Tcl= .2211E#0

.1000E+04 .4710E+00 .2341E+01-.6963E+03 .7177E2835E-03 .2109E+04

1144, All=-400 Bt= .700 Btc917
Al= -392 Ficl= 2298 Tcl= .2211E40

.1000E+04 .4890E+00 .2434E+01-.7599E+03 .6500E2P85E-03 .2050E+04

1.145. All=-400 Bt= .900 Btc917
Al= -648 Ficl= 2.298 Tcl= .2211E40

.1000E+04 .4450E+00 .3333E+01-.9817E+03-.1904E20G9E-03 .2231E+04

1.1.46. All = -400 Bt= .917 Btc#®17
Al= -673 Ficl= 2.298 Tcl= .2211E40
.1000E+01 .0000E+00 -

.1000E+04 .4110E+00 .4512E+01- 1987E+03 9801E26'81E 03 2412E+04

1.1.4.7. Al10 = -.400 Bt0O= .960 Btc0917 Br0= .200
Al= -768 All = -384 Ficl= 2.242 Tcl 2144E+04

.1042E+04 .7110E+00 .2142E+01-.5632E+03 .8763E¥H45E-03 .1523E+04

1.1.5. Al10 = -.498
1.1.5.1. Al10= -.498 Bt0O= .500 BtcO867 BrOo= .800
Al= -498 All= -249 Ficl= 1.902 Tcl 2791E+03

.2000E+03 .1848E+01 .1742E+01-.3407E+02 .1971E5882E-03 .2308E+03

1.1.5.2. Al10 = -.498 Bt0O= .930 BtcO867 Br0= .100
Al= -926 All= -463 Ficl= .599 Tcl z6400E+00

.1103E+01 .8979E-03 .1044E+01 .5547E+00 .9537E1+080E+00 .3501E+01

1.1.5.3. Al10 = -.498 Bt0O= .930 BtcO867 Br0= .120
Al= -926 All= -463 Ficl= .674 Tcl %¥340E+00

.1133E+01 .8174E-03 .1433E+01 .1557E+00 .1123E2890E+00 .1688E+01

1.1.5.4. Al10= -.498 Bt0O= .930 BtcO867 BroO= .128
Al= -926 All= -463 Ficl= .765 Tcl8550E+00

.1176E+01 .8828E-03 .2366E+01-.8399E+00 .8236E66H0E+00 .4139E+01

1.1.5.5. Al10= -.498 Bt0O= .930 BtcO867 Bro= .129
Al= -926 All= -463 Ficl= 1.811 Tcl 4384E+01

.2981E+01 .5892E-03 .9652E+01-.2904E+01-.6715E3%480E+00 .2434E+02

1.1.5.6. Al10= -498 Bt0O= .930 BtcO867 Br0O= .130
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Prolongation of app. 2

Rr Vor Fi X Y dFi T
Al= -926 All= -463 Ficl= 1.822 Tcl 4488E+01

.3035E+01 .9198E-03 .7565E+01 .8650E+00 .2910E5820E+00 .2150E+02

1.1.5.7. Al10= -.498 Bt0O= .930 BtcO867 Bro= .200
Al= -926 All= -463 Ficl= 2.611 Tcl 3961E+06

.1172E+04 .1420E+00 .3420E+01-.1127E+04-.3221E#BG0E-01 .1076E+05

1.1.6.All=-5
1.1.6.1. All= -500 Bt= .100 Btc:866
Al= -010 Ficl= 3.137 Tcl= .7354B-0

.2300E+06 .3434E-03 .3145E+01-.2300E+06-.8302E8835E-03 .1429E+09

1.1.6.2. All= -500 Bt= .300 Btc:866
Al= -090 Ficl= 3.102 Tcl= .8691E30

.2570E+04 .7453E-03 .3180E+01-.2568E+04-.9868EXDQ0E-01 .1802E+06

1.1.6.3. All= -500 Bt= .500 Btc:866
Al= -250 Ficl= 3.015 Tcl= .2651E0
2500E+03 .3000E-03 .3260E+01-.2482E+03-.2953E+8208-01 .5842E+04
1.1.6.4. All= -500 Bt= .700 Btc:866
Al= -490 Ficl= 2.831 Tcl= .1577E30

.3728E+02 .1000E-02 .3502E+01-.3488E+02-.1315E9PQ0OE-01 .3700E+03

1.1.65. All= -500 Bt= .800 Btc:866
Al= -640 Ficl= 2583 Tcl= .3524E20

.1316E+02 .0000E+00 .3915E+01-.9417E+01-.9194E#000E-02 .8627E+02

1.1.6.6. All = -500 Bt= .866 Btc:866
Al= -750 Ficl= 2.257  Tcl= .1049E*0
.1000E+01 .0000E+00 -

.5456E+01 .0000E+00 .6695E+01 5000E+01 2184E5(DX]DE 01 3193E+02

1.1.6.7. Al10 = -500 Bt0O= .900 BtcO866 Br0= .200
Al= -900 All= -450 Ficl= 2.529 Tcl 3503E+05

.1111E+06 .2170E+00 .3268E+01-.1102E+06-.1399E3D51E-04 .1010E+06

117.All=-6
1.1.7.1. All = -600 Bt= .100 Btc:800
Al= -.012 Ficl= 3.142 Tcl= .2107E+02 Racl.5000E+01

.4969E+01 .0000E+00 .3146E+01-.4969E+01-.2190E-000E-01 .2101E+02

1.1.7.2. All= -600 Bt= .300 Btc:800
Al = -108 Ficl = 3.142 Tcl = .2107E+02 Racl.5000E+01

.4712E+01 .0000E+00 .3197E+01-.4705E+01-.2609E8000E-02 .1968E+02

1.1.73. All= -600 Bt= .500 Btc:800
Al = -300 Ficl= 3.142 Tcl = .2107E+02 Racl.5000E+01

.4100E+01 .0000E+00 .3341E+01-.4019E+01-.8122E¥D00E-01 .1694E+02

1.1.74. All = -600 Bt= .700 Btc:800
Al = -588 Ficl= 3.142 Tcl= .2107E+02 Racl.5000E+01

.2867E+01 .0000E+00 .3858E+01-.2162E+01-.1883E3600E-01 .1205E+02

1.1.75. All= -600 Bt= .800 Btc:800
Al = -768 Ficl= 3.142 Tcl= .2107E+02 Racl.5000E+01
.1000E+01 .0000E+00 -

.1762E+01 .5518E-03 .9063E+01- 1648E+01 6236E7-ODQE+00 1329E+02

118 . All=-7
1.1.8.1. All= -700 Bt= .100 Btc714
Al = -.014 Ficl= 3.142 Tcl= .8693E+01 Racl.2500E+01

.2482E+01 .0000E+00 .3148E+01-.2482E+01-.1590E2000E-01 .8632E+01

1.1.8.2. All=-700 Bt= .300 Btc+14
Al = -126 Ficl= 3.142 Tcl = .8693E+01 Racl.2500E+01

.2334E+01 .0000E+00 .3220E+01-.2327E+01-.1828E2D00E-01 .8172E+01

1.1.83. All= -700 Bt= .500 BtcF14
Al = -350 Ficl= 3.142 Tcl = .8693E+01 Racl.2500E+01

.1991E+01 .0000E+00 .3446E+01-.1899E+01-.5968E¥D00E-01 .7203E+01

1.1.84. All= -700 Bt= .700 Btc714
Al = -.686 Ficl= 3.142 Tcl= .8693E+01 Racl.2500E+01

Prolongation of app. 2

Rr Vor Fi X Y dFi T

.1220E+01 .0000E+00 .5726E+01 .1035E+01-.6451E2600E-01 .6914E+01

1.1.85. All=-700 Bt= .714 BtcF14
Al = -714 Ficl = 3.142 Tcl = .8693E+01 Racl.2500E+01
.1000E+01 .0000E+00 -

.1031E+01 .1925E-03 .2338E+02- 1845E+00 1014E2-317E+01 2404E+02

1.1.8.6. Al10= -.700 BtO= .800 BtcO %14 BrO= .400
Al =-1.120 All = -.560 Ficl = 3.142 Tcl = .4232E+6&&cl = .8333E+01

.1125E+05 .4140E+00 .2439E+01-.8586E+04 .7271E3840E-04 .3765E+05

1.1.9. All =-707
1.1.9.1. All = -707 Bt= .707 Btc 707
Al = -707 Ficl= 3.142 Tcl= .8338E+01 Racl.2415E+01
Rn =1.0001 Ra=1.00045
.1000E+01 .0000E+00 -

.1000E+01 .0000E+00 .1061E+03 7596E+00 6504E98®2E 04 1062E+03

1.1.10.Al1 =-8
1.1.10.1. Al1= -800 Bt= .100 Btc#36
Al = -016 Ficl= 3.142 Tcl= .5408E+01 Racl.1667E+01

.1653E+01 .0000E+00 .3151E+01-.1653E+01-.1555EB30Q0E-01 .5373E+01

1.1.10.2 Al1= -800 Bt= .300 Btc#00
Al = -144 Ficl = 3.142 Tcl = .5408E+01 Racl.1667E+01

.1540E+01 .0000E+00 .3243E+01-.1532E+01-.1559E2800E-01 .5112E+01

1.1.10.3. Al1= -800 Bt= .500 Btc %600
Al= -.400 Ficl= 3.142 Tcl= .5408E+01 Racl.1667E+01

.1270E+01 .0000E+00 .3601E+01-.1138E+01-.5631E3D00E-01 .4616E+01

1.1.10.4. Al1= -800 Bt= .599 Btc 600
Al = -574 Ficl= 3.142 Tcl= .8338E+01 Racl.2415E+01
Rn=1.001 Ra=1.0042

.1004E+01 .0000E+00 .4366E+01-.3409E+00-.9444E2D00E-01 .4362E+01

1111. A1=-9
1.1.11.1. All= -900 Bt= .100 Btc436
Al = -.018 Ficl= 3.142 Tcl= .3951E+01 Racl.1250E+01

.1239E+01 .0000E+00 .3151E+01-.1239E+01-.1166E3000E-01 .3929E+01

1.111.2. Al1= -900 Bt= .300 Btc#36
Al = -162 Ficl= 3.142 Tcl= .3951E+01 Racl.1250E+01

.1142E+01 .0000E+00 .3280E+01-.1131E+01-.1576 E2DO0E-01 .3764E+01

11113, All=-900 Bt= .400 Btc.436
Al = -288 Ficl = 3.142 Tcl = .3951E+01 Racl.1250E+01
Rn=1.001 Ra=1.0462

.1046E+01 .0000E+00 .3411E+01-.1008E+01-.2784E2800E-01 .3565E+01

1.1.114. All1=-900 Bt= .435 Bic#36
Al = -.341 Ficl= 3.142 Tcl= .3951E+01 Racl.1250E+01
Rn=1.001 Ra=1.00124

.1001E+01 .0000E+00 .2925E+01-.9776E+00 .2151E¥B0O0E-01 .2915E+01

1.1.11.5. Al10 = -900 BtO= .600 BtcO =364 Br0 = .500
Al =-1.080 All = -.540 Ficl = 3.142 Tcl = .7497E+6&&cl = .1250E+02

.1667E+05 .5850E+00 .2455E+01-.1289E+05 .1057E+836E-04 .4741E+05

1.2. Al =-0.3 = const
1.2.1. All= -900 Bt= .408 Btc=36
Al = -300 Ficl = 3.142 Tcl= .3951E+01 Racl.1250E+01

.1036E+01 .0000E+00 .3315E+01-.1020E+01-.1788EX060E+00 .3426E+01

1.2.2. All= -700 Bt= .463 Btc~14
Al= -.300 Ficl= 3.142 Tcl= .8693E+01 Racl.2500E+01

.2074E+01 .0000E+00 .3377E+01-.2017E+01-.4837E*R00E-01 .7417E+01

1.23. All=-500 Bt= .548 Btc 866
Al= -300 Ficl= 2982 Tcl= .1324E40

.1570E+03 .0000E+00 .3301E+01-.1550E+03-.2485E5629E-03 .3123E+04

124. Al=-497 Bt= 550 Bitc 868
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The ending enc. 2

Vor Fi X Y dFi T
Al= -301 Ficl= 2.889 Tcl= .5838E3-0

.1000E+03 .1030E+00 .3095E+01-.9989E+02 .4658E30Q0E-02 .6656E+03

1.25. All=-300 Bt= .707 Btc:954
Al= -300 Ficl= 1.998 Tcl= .1536E30

.1000E+03 .6900E+00 .2050E+01-.4611E+02 .8874E+0Q@0E-02 .1430E+03

1.26. All=-200 Bt= .866 Btc:980
Al= -300 Ficl= 1811 Tcl= .1274E30

.1000E+03 .8530E+00 .1861E+01-.2861E+02 .9582E+0Q0E-02 .1169E+03

1.27. Al=-180 Bt= .913 Btc984
Al= -300 Ficl= 1780 Tcl= .1236E30

.1000E+03 .8860E+00 .1786E+01-.2135E+02 .9769E+0Q0E-02 .1128E+03

1.28. All= -154 Bt= .988 Btc 988
Al= -301 Ficl= 1742 Tcl= .1191E30

.1000E+01 .0000E+00 - -

.1000E+03 .9240E+00 .2105E+01-.5092E+02 .8607E+0Q0E-02 .1086E+03

1.29. AI10= -152 Bt0O= .992 BtcO#988 BrO= .100
Al= -302 All= -151 Ficl= 1.751 Tcl A208E+05

.1000E+03

.1000E+04

.1000E+04

.1000E+04

.1000E+04

.1000E+04

.1000E+04

.1000E+04

.1000E+04

.1000E+04

.1000E+04

.1008E+05 .9760E+00 .1698E+01-.1278E+04 .9999E+DE8E-04 .1042E+05

1.2.10. All= -150 Bt= 1.000 Btc:989
Al= -300 Ficl= 1736 Tcl= .1185E30

.1000E+01 .1562E+01 .8807E+00 .1000E3®&1E-03 .1000E+03

2. Repulsion (All > 0)
21.A1=.3
21.1. Al= 300 Bt= .100
Al= 006 Ficl= 1.337 Tcl= .7916E30

.1263E+01 .1338E+01 .2309E+03 .9730E3D&1E-04 .7930E+03

212. Al= .300 Bt= .500
Al= .150 Ficl= 1.337 Tcl= .7916B30

.1215E+01 .1342E+01 .2269E+03 .9739E30&E-04 .8235E+03

213. Al= 300 Bt= .900
Al= 486 Ficl= 1.337 Tcl= .7916B3%0

.1076E+01 .1380E+01 .1895E+03 .9819E#0&1E-03 .9294E+03

2.14. Al= 300 Bt= 1.000
Al= .600 Ficl= 1.337 Tcl= .7916E3%0

.1000E+01 .1569E+01 .1539E+01 .1000EXQI9E-03 .1000E+04

22 .A1=.7
221. Al1= 700 Bt= .100
Al= .014 Ficl= 1.146 Tcl= .6468E3%0

.1543E+01 .1147E+01 .4108E+03 .9117E#DAVE-04 .6490E+03

222 Al= 700 Bt= .500
Al= 350 Ficl= 1.146 Tcl= .6468E3%0

.1413E+01 .1163E+01 .3970E+03 .9178E#DBGE-04 .7084E+03

223. Al= .700 Bt= .900
Al= 1134 Ficl= 1.146  Tcl= .6468E30

.1103E+01 .1277E+01 .2895E+03 .9572E39G0E-04 .9062E+03

23.A1=15
231. Al= 1500 Bt= .100
Al= .030 Ficl= .927 Tcl= .5013E30

.1984E+01 .9289E+00 .5987E+03 .8010E3837E-04 .5051E+03

23.2. Al= 1500 Bt= .500
Al= 750 Ficl= .927  Tcl= .5013E3-0

.1654E+01 .9703E+00 .5651E+03 .8251E6®&1E-04 .6050E+03

2.33. All= 1500 Bt= .900
Al= 2430 Ficl= .927 Tcl= .5013E30

.1111E+01 .1205E+01 .3577E+03 .9339E3823E-04 .9132E+10

Appendix 3

NEARLUMINAL PARTICLE MOVEMENT

The initial parameters (Are adduced to values anhgial point RO).

m:=1 is the initial radius of an integration;;
n:=10 IS a quantity of integration segments;

b is a final radius of an integration.
allo=-4 bt:=.7 br:=0.3 b:=bt+ .000002

Evaluation of a step h of segments and other petems

b-m

h:= i'=1.n j:=0.n r=m r l1:rj+h z:=m+ h,rm+ 2-h..k

n 0 I+

aIJ:r.—h 2 in::o dinJ:O dfinH::O tOJ:O all:=all0bt al:=2a

i bp:=4/1- b

/ -5
ba::J 1 bt- ex;{ 2 a1 (1- b) } ba= 0.7112bp = 0.7141

1
N2 - b \1- bt
bt

Integration of time t and angular coordinates fi

Calculation of radial velocity

2
1- b?‘f (1- bP- 1) -ex{ 2 allt.

vor(z) =

) =— 2 fiz) =+ i h

Zvor(z) vor(2) dt, = ft(z)dz dfi, = f(z)dz

a a
i i

Summation on segmentsThe correction at the pericentre at luminal vei

to=t_ +dt fio =fi_ +dfi
Reduction to parameters at the pericentre

r.

zi=r ro=L av=t afi=fi fi =fi - afi _bG-at
170 0 bt n noo G
- - —r cos/ fi —rsin/fi) bt
bt0 := bt bro:= br X i=r cos< f}) y, =t sm\flj)
vr; :zvor(z]J.) bt ki=n..0 kl=n+ 1.1 dfi, :=-dfi,

t =t - .002bf fi_:=fi - .002
n n n n

THE PROGRAM IN MATHCAD ENVIRONMENT OF
INTEGRATIONS OF THE EQUATIONS OF
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Prolongation of app. 3 Appendix 4

Outcomes of calculation TRAJECTORIES OF MOVEMENT INSIDE «BLACK
allo=-4 bt0 = 0.7 bro=0.3 bh=07 HOLES»
R/R G & XIR, yIR, Ag te; /R,
al=-5.6 all=-2.8 vor(rn) = 0.4286 1.1.1. a°=-2 Lo=0.5 [Bo=0 a=-1 a=-2
, _ 1 0. 002 0 1 0 0 0
M vr, fi, X, Yi dfi,, t, 1.1 0.3785 0. 437 0. 9966 0. 4656 0. 436 0. 4701
- 1.2 0. 4346 0.6209 0.976 0. 6982 0.1839 0.7124
1 2.390510° 0 = 0 | 0 0 1.3 0. 4405 0.7667  0.9363 0.9019 0.1457  0.9397
1.042p 0.2837 02878 ~ |1.0000  ]0.2955 0.2853 0.295 1.4 04251 0.8932 0.8777  1.091 0.1265 1.17
1.0857 0.3892 0.3997 1.0001  |0.4225 0.1124 0.422 1.5 0. 3972 1. 009 0.7994 1. 269 0.1155 1.413
1.1286 0.4611 0.4818 1.0001 0.523 82152108  |0-523 1.6 0. 3599 1.119 0. 6992 1. 439 0.1098 1.677
1.1714 05107 0.5484  |0.9996  |0.6107 g [ (Y E| 1.7 0.3137 1.227 0.5722 1. 601 0.1089 1.973
2 one s bwer et O oo Poopmm rgm pam e pue row
15?71 0.5495 §;§21 %f§§° ggi;? 57194162 g;zg 2 0 1.759 -0.3746  1.965 0.2844  3.879
. . . . D .

1.3420 05369 07528 [0.9805  |0.9176 LB 0.931 112. a’=-2 [ =0.5 =01 @x=-1 a=-2
: 0.4989 : A 511D 4.810110° : 1 0. 002 0 1 0 0 0
1.3857 0.4276 0.801y  |0.9638  |0.995} P R 1.1 0.3791  0.4369  0.9967  0.4654  0.4359  0.4699
1.4286 03 0.8606  |0.9314 1.0832 : 1.140 1.2 0. 4364 0. 6203 0.9764 0. 6976 0.1834 0.7116

4.942110° 1.3 0. 4437 0. 7652 0.9376 0. 9005 0. 1449 0.9376
£ 890917 1.4 0. 43 0. 8906 0. 8805 1.088 0. 1254 1. 166
1.6 0. 3687 1.112 0. 7083 1. 435 0.1077 1. 664
1.7 0. 3253 1.218 0.5874 1. 595 0. 1057 1. 952
P, ,i=all0 P, ,=bt0 P, = br0 P, 5 =all 1.8 0.2725 1.327 0. 4344 1.747 0. 1091 2.286
' ' ' ' 1.9 0. 2052 1. 449 0. 2305 1.886 0.1221 2.705
Py, -al Py =N Py g~ 2 0.1 1. 621 -0. 0997 1.998 0.1715 3. 361
: : : 2.003 0.09486 1.629 -0.1166 2 0.008032 3.393
P oy P —wr P i P iox 2.006 0.08942 1.637 -0.1337 2.002 0.008466 3. 427
jr10 IR IR 13 2.009 0.08364 1.646 -0. 1519 2. 004 0.008987 3.463
P -y P — df bt 2.013 0.07743 1.656 -0.1715 2.005 0.009627 3.502
jt1,4 7] k1,5 "k jt1,6° ] 2.016 0.07067 1.667 -0.1927 2.006 0.01044  3.545
2.019 0.0632 1.678 -0.2161 2.007 0.01151  3.592
Record of outcomes in the file R_407003.prn WRITEPRN "R_40703.prn) := P 2.022 0.05473 1.691 -0.2426 2.007 0.01302 3.645
2.025 0.04468 1.706 -0.2739 2.006 0.0154 3.708
Plotting of the graphics 2.028 0.03159 1.727 -0.3145 2.004 0.02001 3.79
2.031 0.0002414 1.774 -0. 4107 1. 989 0.04789  3.987
113. &°=-2 [o=0.5 f[0=0.3 ax=-1 a-=
1 0. 002 0 1 0 0 0
0.5 1 1.1 0. 3833 0. 4359 0.9971 0. 4645 0. 4349 0. 4688
1.2 0. 4504 0. 6157 0.9797 0. 693 0.1797 0. 7055
" y 1.3 0. 4688 0. 7545 0. 9472 0. 8904 0. 1389 0.922
i Yk os 1.4 0. 4667 0.8717 0. 901 1.072 0.1172 1.135
1.5 0. 4533 0.975 0.8418 1.242 0.1033 1.352
1.6 0. 4325 1. 069 0.7697 1. 403 0.09393 1.578
. . 1.7 0. 4063 1. 156 0. 6844 1.556 0.08754 1.816
0.7 08 00 oo 1 i1 1.8 0. 3755 1. 24 0.5847 1.702 0.08351 2.072
2 X 1.9 0. 3402 1.322 0. 4686 1.841 0.08162  2.351
2 0.3 1. 404 0. 3326 1.972 0.08212 2.664
2.036 0.2843 1. 434 0.2779 2.016 0.02985 2.786
2.071 0.2677 1. 464 0.22 2.059 0.03051 2.914
2.107 0.2501 1. 496 0. 1579 2.101 0.03143  3.051
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Prolongation of app. 4 Prolongation of app. 4

RIR, i p XIR, yiR, Ap tc; /R, R/R, B p XIR, yiR, Ap tc; /R,
2.142 0.2312  1.528 0.09064 = 2.14 0.03269  3.199 801.2  0.04992 2.246 -500.6 625.5 0.007714 10720
2.178 0.2107  1.563 0.01717  2.177 0.03444  3.359 1001 0.04467 2.251 -629.6 778. 2 0.005268 14960
2.213 0.1881 1.6  -0.06428 2.212  0.03694  3.538 1201 0.04079 2.255 -758.9 930. 6 0.00389 19650
2.249  0.1626  1.641 -0.1566  2.243  0.04067  3.74 1401 0.03777 2.258 -888.4 1083 0.003025 24750
2.284  0.1325  1.687 -0.2656  2.269  0.04683  3.981 1600 0.03533 2.26 -1018 1235 0.002439 30220
2.32 0.0935  1.747 -0.4057 2.284  0.05926  4.295 1800 0.03332 2.262 -1148 1387 0.00202 36050
2.355  0.0004051 1.885 -0.727 2.24 0.138 5. 053 2000 0.03161 2.264 -1278 1538 0.001709 42210

114, a’°=-2 f9=0.5 f[¢=0.5 a=1 a =- 1.16. a®=-2  Bo=0.5 [¢=0.7 a=-1 a=-2
1 0. 002 0 1 0 0 0 1 0. 002 0 1 0 0 0
1.1 0.3916  0.4341  0.998  0.4627  0.4331  0.4667 1.1 0.4038  0.4315  0.9992  0.46 0.4305  0.4637
1.2 0.4772  0.607 0.9856 0.6845  0.1729  0.6943 1.2 0.5149  0.5956  0.9934  0.6732 0.1641  0.6795
1.3 0.5152  0.7358  0.9637 0.8725  0.1288  0.895 1.3  0.5779  0.7126  0.9836  0.85 0.1171  0.8619
1.4  0.5327  0.8404  0.934  1.043 0.1047  1.085 1.4  0.6186  0.8044  0.971 1.009  0.09174 1.029
1.5  0.5389  0.9292  0.8977  1.202 0.08877  1.272 1.5  0.6463  0.8796  0.9561  1.156  0.07524 1.187
1.6 0.538 1. 007 0.8557  1.352 0.07732  1.457 1.6  0.6656  0.9431  0.9396  1.295  0.06349 1.339
1.7  0.5325  1.075 0.8085 1.495 0.06864  1.644 1.7 0.6793  0.9978  0.9217  1.428  0.05466 1.488
1.8  0.5238  1.137 0.7566  1.633 0.06184  1.833 1.8  0.6889  1.046 0.9026  1.557  0.04776 1.634
1.9  0.5128  1.193 0.7002 1.766 0.05639  2.026 1.9  0.6955  1.088 0.8825  1.683  0.04223 1.778
2 0.5 1.245 0.6395 1.895 0.05195  2.224 2 0.7 1.125 0.8615  1.805  0.03771 1.921
2.191 0.4722  1.335 0.5129 2.13 0.08952  2.617 3.8  0.6728 1. 465 0.4017  3.779  0.3399  4.516
2.382 0.4413  1.415 0.3707 2.353 0.08002  3.035 5.6  0.6279  1.595  -0.1333  5.598  0.1297  7.289
2.573 0.4081  1.488 0.2132 2.564 0.07329  3.484 7.4 05947 1.666  -0.7005  7.367  0.071 10. 24
2.764 0.3729  1.557 0.03943 2.763 0.0687  3.973 9.2 05703 1.711  -1.285 9.11 0.04537 13.33
2.955 0.3357  1.622  -0.1526 2.951 0.06593  4.512 11 0.5517  1.743  -1.881  10.84 0.0317  16.54
3.145 0.296 1.687  -0.3661 3.124 0.06499  5.117 12.8  0.5372  1.766  -2.485  12.56 0.02348 19.85
3.336 0.2526  1.754  -0.6069 3.281 0.06628 b5.814 14.6  0.5255  1.784  -3.093  14.27 0.01813 23.24
3.527 0.2032  1.825  -0.8865 3.414 0.07113 6. 652 16.4  0.5159  1.799  -3.706  15.98 0.01444 26.7
3.718 0.1415  1.909  -1.234  3.507 0.08434  7.762 182  0.5079  1.81 -4.321  17.68 0.01178  30.22
3.909 0.0006827 2.093  -1.949  3.389 0.1835  10. 47 20 0.5011  1.82 -4.938  19.38 0.009802 33.78
115 &’ =-2 B, =0.5 v=0.659 @=-1 a=-2 201.8  0.4279  1.917  -68.49  189.8 0. 097 446
1 0. 002 0 1 0 0 0 401.6  0.4232  1.923  -138.5 377 0.005793 916.1
11 0401  0.4321  0.9989  0.4606  0.4311  0.4614 601.4  0.4216  1.925  -208.5  564.1 0.001958 1389
15 05084 005981 09917 06757 0 168 0. 6798 801.2  0.4208  1.926  -278.5  751.2 0.0009845 864
13 0564 07176 09794 08548 0. 1195 0 8659 1001 0.4203  1.926  -348.5  938.4 0.0005924 2339
1.4  0.5997 0.8119  0.9634  1.016 0.09431 1.037 1201 0.42 1.927  -418.5 1126 0.0003956 2814
1.5  0.623  0.8897  0.9444  1.165 0.07783  1.201 1401 0.4197 ~ 1.927  -488.5 1313 0.000283 3290
1.6  0.6383 0.9558  0.9232 1.307 0.06604 1.359 1600 0.4196 1.927 -558.5 1500 0.0002124 3766
17 o easr 1 013 0.9 1 242 0. 05714 1. 518 1800 0.4194  1.927  -628.6 1687 0.0001653 4243
18  o0.es43 1 063 0.8751  1.573 0 05017 1 668 2000 0.4193  1.928  -698.6 1874 0.0001323 4719
1.9 0.6576 1.108 0. 8489 1.7 0.04456  1.821 1.1.7. a®=-2 f[Bo =0.5 [, =0.8 o =-1 a=-2
2 0.659  1.148 0.8213  1.824 0.03997 1.972 1 0. 002 0 1 0 0 0
3.8 0.5926 1.519 0.1966  3.795 0.371 4.825 1.1 0.4112  0.4299 0.9999  0.4585  0.4289  0.4619
5.6 0.522  1.67 -0.5559  5.572 0.1512  8.069 1.2 0.5371  0.5892 0.9977  0.6668  0.1593  0.6713
7.4  0.4695 1.758  -1.375 7.271 0.08749 11.71 1.3 0.6139  0.7004 0.994 0.8379  0.1112  0.8445
9.2  0.4297 1.816  -2.238 8. 924 0.05877 15.73 1.4 0.6667  0.7861 0.9892  0.9907  0.08575 1
11 0.3983 1.859  -3.131 10. 54 0.04295 20.08 1.5 0.7051  0.8555 0.9837  1.132 0.06939  1.146
12.8  0.3728 1.893  -4.048 12.14 0.03315 24.76 1.6 0.7342  0.9134 0.9777  1.267 0.05788  1.285
14.6  0.3516 1.919  -4.984 13.72 0.02659 29.73 1.7 0.7566  0.9627 0.9712  1.395 0.04931  1.419
16.4  0.3336 1.941  -5.935 15. 29 0.02194 34.99 1.8 0.7744  1.005  0.9643  1.52 0.04268 1.55
18.2  0.3181 1.96 -6.9 16. 84 0.01851 40.52 1.9 0.7885  1.043  0.9572  1.641 0.03741 1.677
20 0.3046 1.976  -7.875 18. 38 0.01588 46. 31 2 0.8 1.076  0.9498  1.76 0.03313 1.803

201.8  0.09918 2.196 -118.1 163. 6 0.22 1366 3.8 0.8535  1.36 0.7948  3.716 0.2841  3.948

401.6  0.07044 2.225 -244. 4 318. 7 0.02906 3815 5.6 0.8517  1.459  0.6237  5.565 0.0991  6.057

601.4  0.0576 2.238 -372.2 472. 4 0.01292 6978 7.4 0.8462  1.51 0.4471  7.386 0.05115 8.178
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Prolongation of app. 4
R/R, 5 @ x/ y/R, Ag tc, /R,
9.2 0. 8413 1.542 0. 2678 9. 196 0.03133 10.31
11 0.8372 1.563 0.08718 11 0.02119 12.46
12.8 0. 834 1.578 -0.09438 12.8 0. 0153 14. 61
14. 6 0. 8313 1.59 -0. 2765 14. 6 0.01157 16.77
16. 4 0.8291 1.599 -0.4591 16. 39 0. 009055 18.94
18.2 0. 8272 1. 606 -0.6419 18.19 0.007282 21.11
20 0. 8257 1.612 -0.825 19. 98 0. 005983 23. 29
201.8 0. 8089 1.667 -19.41 200. 9 0. 055 247. 2
401. 6 0. 8079 1. 67 -39.85 399.6 0. 00305 494. 4
601. 4 0. 8075 1.671 -60.3 598. 4 0. 001024 741.8
801. 2 0. 8074 1.672 -80.74 797.1 0. 0005135 989. 2
1001 0. 8073 1.672 -101.2 995. 9 0. 0003086 1237
1201 0. 8072 1.672 -121.6 1195 0. 0002059 1484
1401 0.8071 1.672 -142.1 1393 0. 0001472 1732
1600 0.8071 1.673 -162.5 1592 0. 0001104 1979
1800 0. 8071 1.673 -182.9 1791 8. 593e- 005 2227
2000 0. 807 1.673 -203.4 1990 6. 876e- 005 2474
1.21. a®=-2 By =0.5516 Bo =0 a-1.103
1.813 0 1.572 -0.002003 1.813 0 3.051
1.772 0.138 1.39 0. 3186 1.743 -0.1819 2.462
1.732 0. 1949 1.311 0. 4455 1.673 -0.07944 2.218
1.691 0. 2383 1. 247 0. 5387 1.603 -0.06401 2.03
1. 65 0. 2745 1.19 0.6136 1.532 -0. 05676 1.872
1.61 0. 3058 1.137 0. 6764 1.461 -0. 0527 1.732
1.569 0. 3335 1.087 0.7301 1.389 - 0. 05032 1.604
1.528 0. 3581 1.038 0. 7766 1. 316 -0.04899 1.487
1. 488 0. 3799 0.9894 0.8171 1. 243 -0.04842 1.377
1. 447 0. 3992 0.941 0. 8524 1.169 -0.04843 1.272
1.406 0. 4158 0. 892 0. 8831 1. 095 -0.04897 1.173
1. 366 0. 4297 0. 842 0. 9096 1.019 - 0. 05002 1.077
1. 325 0. 4403 0.7904 0.9324 0. 9417 -0. 05159 0. 9833
1. 285 0. 4473 0.7366 0.9515 0. 8629 -0. 05376 0. 8918
1.244 0. 4495 0.6799 0.9672 0.7821 -0. 05668 0. 8012
1.203 0. 4456 0.6193 0.9797 0. 6985 -0. 0606 0. 7105
1.163 0. 4332 0.5533 0.9891 0.611 -0. 06601 0.6182
1.122 0. 408 0.4794 0.9954 0. 5175 -0.0739 0.5218
1.081 0. 3615 0.3927 0.999 0.4138 -0.08673 0. 4167
1. 041 0.2742 0. 2799 1 0. 2875 -0.1128 0. 29
1 0. 001904 0 1 0 -0.2789 0
131. a’=-2 By =0.7 Bo=0 a=-1.4 a=2.8
1 0. 00169 0 1 0 0 0
1.043 0. 2826 0. 2872 1 0. 2954 0. 2862 0. 2964
1. 086 0. 3756 0.4014 0.9994 0. 4242 0.1142 0. 4255
1.129 0.4211 0.4887 0.9965 0. 5298 0. 0873 0. 5324
1.171 0. 4366 0.5639 0.99 0.6261 0. 07526 0.6318
1.214 0. 4308 0.6331 0.9789 0.7185 0. 06921 0. 7303
1. 257 0. 4076 0.6999 0.9616 0. 8098 0. 06675 0. 8322
1.3 0. 3683 0.7673 0.9358 0. 9024 0. 06737 0. 9424
1.343 0. 3107 0.8393 0.897 0. 9993 0. 07205 1.068
1. 386 0. 2254 0.9248 0.8342 1. 106 0. 08549 1.228
1. 429 0 1.111 0. 6338 1.28 0. 1863 1.6
132. a’=-2 [0 =0.7 f[o=0.1 a =-1.4 a=2.8
1 0. 00169 0 1 0 0 0
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R/R,

043
086
129
171
214
257
3
343
386
429
429
43
431
432
433
434
434
435
436
437

3.3.
1
043
086
129
171
214
257
3
343
386
429
438
447
456
466
475
484
493
503
512
521

4.

043
086
129
171
214
257
3

343
386
429

a

m

OO0 00000000000000000

OO0 O000000000000000000 |

©cooo0o0000000

G
2827

3759
4219
4384
4339
4125
3755
3215
2433
1
0949
08951
08376
07757
07084
06338
05491
04485
03173

. 0009264

-2 fo
00169
2828
3781
4289
4526
4579
4491
4287
3976
3555
3
2857
2704
2538
2358
2159
1937
1683
1378
0977

. 0002855

2 fo

. 00169

2832
3825
4424
4798
5024
5145
5189
5173
5107
5

ocoocoooo000

. 2872

4013
4885
5635
6324
6985
7649
8351
9163
041

045

054
059
065
071
078
086
096
121

0.7

. 2872

401
4873
5606
6266
6883
748
8073
8683
9342
9494
9653
9821
9998
019
039
062
089
124
206

0.7

. 2871

4004
4849
5551
6164
6715
7222
7695

. 8143
. 8571

X/Ry YR, Ag
1 0. 2954 0.
0.9994 0. 4241 0.
0. 9966 0. 5297 0.
0.9903 0. 6258 0.
0. 9795 0.7177 0.
0. 9627 0. 8084 0.
0.9379 0. 9002 0.
0.9012 0. 9955 0.
0. 8436 1. 099 0.
0.7218 1. 233 0.
0.7172 1. 236 0.
0.7122 1.24 0.
0. 7068 1. 244 0.
0. 7009 1. 249 0.
0. 6945 1.253 0.
0.6874 1. 258 0.
0.6792 1. 263 0.
0. 6693 1. 27 0.
0. 6564 1.277 0.
0.625 1.294 0.
ﬁro =0.3 a1:'1.4
1 0
1 0.2954 0.
0. 9996 0. 4238 0.
0.9972 0.5284 0.
0.9921 0.6228 0.
0. 9836 0.712 0.
0. 9709 0. 7986 0.
0. 953 0. 8842 0.
0. 9286 0.9701 0.
0.8954 1.058 0.
0. 8493 1. 149 0.
0.8371 1.169 0.
0. 8236 1.19 0.
0. 8087 1.211 0.
0.7921 1. 233 0.
0. 7735 1. 256 0.
0. 7521 1. 279 0.
0.727 1.304 0.
0. 6959 1.332 0.
0. 6535 1. 363 0.
0.543 1.421 0.
[zo =0.5 a =-1.
1 0
1 0. 2953 0.
0.9998 0. 4232 0.
0.9984 0.5261 0.
0. 9955 0.6174 0.
0. 9908 0.7019 0.
0. 9842 0.7822 0.
0. 9755 0. 8593 0.
0. 9645 0.9344 0.
0.9511 1. 008 0.
0. 9352 1.08 0.

Prolongation of app. 4

tc; /IR,
2862 0. 2964
1141 0. 4254
08719 0.5322
07503 0.6314
06883 0.7293
06613 0. 8303
06636 0.9388
07021 1.061
08119 1.213
1248 1.461
004166 1. 47
004398 1.478
004676  1.488
005016  1.498
005446 1.51
006015 1.522
006817  1.536
008073  1.553
0105 1.574
02466 1.625
=-2.8

0 0
2862 0. 2964
1138 0. 4251
08628  0.5307
07329 0.6276
066 0.7214
06176  0.8157
05963  0.9132
0593 1.017
06103 1.13
06589  1.261
01537  1.293
01598 1. 326
01673 1.361
01769  1.399
01893 1.44
02062 1.485
02304 1.536
02691 1. 596
03454 1.675
08192  1.864
4 g =2.8
0 0
2861 0. 2964
1133 0. 4244
08455  0.5279
07016  0.6206
06126  0.7077
05515 0.7919
0507 0. 8747
04734  0.9574
04477  1.041
04281 1.125
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Prolongation of app. 4 Prolongation of app. 4

R/R, B XIR, yiR, Ag tc; /R, R/R, B P XIR, yiR, Ag tc; /R,
1.477 0.4836  0.9037 0.9139 1.16 0.04668 1.224 2.714 0.8727  1.212  0.9536 2.541  0.4138 2.597
1.526 0. 463 0.9491 0.8885 1.24 0.04542  1.326 4 0.8868  1.346  0.8912 3.899  0.1343 4.053
1.574 0.4385  0.9939 0.8586 1.319 0.04476  1.433 5.286 0.8848  1.415  0.8217 5.221  0.06861 5. 504
1. 622 0.41 1.039  0.8233 1.398 0.04471 1.548 6.571 0.8801  1.457  0.7485 6.529  0.04194 6. 961
1.671 0.3773  1.084  0.7817 1.477 0.04539 1.671 7.857 0.8755  1.485  0.6732 7.828  0.02836 8. 426
1.719 0.3396  1.131  0.7321 1.556 0.04703  1.806 9.143 0.8714  1.506  0.5965 9.123  0.02049 9.898
1.768 0.2956  1.181  0.6716 1.635 0.05016 1.958 10. 43 0.8679  1.521  0.519 10.42 0.01551  11.38
1.816 0.2423  1.237  0.5947 1.716 0.05606  2.139 11.71 0.8648  1.533  0.4408 11.71 0.01215  12.86
1.865 0.1718  1.306  0.4877 1.8 0.06899  2.373 13 0.8622  1.543  0.3622 12.99 0.009777 14.35
1.913 0.0008075 1.462  0.2075 1.902 0.1559  2.934 14. 29 0.8599  1.551  0.2832 14.28 0.00804  15.84

135 al =-2 -0.7 -0.6676 a =-1.4 g=-2.8 144.1 0.8335  1.625 -7.864 143.9 0.0074  170.7

Tt 0_0037430 0 Fo 1 o 5 5 286.9 0.8318  1.63 -16.84 286.4  0.004145  342.1

1 043 0.2836 0. 287 1 0.2952  0.284 0. 2953 429. 6 0.8312  1.631 -25.81 428.8  0.001393  513.8

572.3 0.8309  1.632 -34.79 571.2  0.0006986 685.5
1.086 0.3877  0.3995 1 0.4223  0.1126 0. 4224

715 0.8307  1.632 -43.76 713.7  0.0004198 857.3
1.129 0.4584  0.4821 1 0.5232 0.08258  0.5235
1171 0 511 05485 09993 0 6112 0 06683 O o1ls 857.7 0.8306  1.632 -52.73 856.1  0.0002802 1029
1.214 0.5519  0.6056  0.9984 0.6912 0.05666  0.6924 1000 0.8305 1.633 -61.71 998.5  0.0002003 1201

1143 0. 8304 1.633 -70.68 1141 0.0001503 1373
1. 257 0.5847  0.655 0.997  0.7658 0.04938  0.7677

1286 0. 8304 1.633 -79.66 1283 0.0001169 1545
1.3 0.6115  0.6988  0.9953 0.8363 0.04383  0.8393 1399 0 8303 1 633 .88 63 1476 9 356e-005 1913
1.343 0.6336  0.7382  0.9933 0.9037 0.03942  0.9081 0 ' - 88. - 356e-
1. 386 0. 6521 0.774 0.9909 0.9686 0.03582 0.9748 137. a7 =-2 [u=0.7 0=0.7141 x=-1.4 a=-2.8
1.429 0.6676  0.8068  0.9883 1.032  0.0328 1. 04 1 0. 00169 0 1 0 0 0
2.714 0.7312  1.265 0.8179 2.588  0.4577 2.801 1.043  0.2837 0.2871 1 0.2953  0.2861 0.2963

4 0.6724  1.432 0.5516 3.962  0.1678 4. 632 1.086 0.3894 0. 3994 1 0.4222 0.1123 0. 4233

5. 286 0.6174  1.527 0.2338 5.281  0.09409  6.629 1.129  0.4635 0. 4814 1 0.5225 0.08196  0.5236
6.571 0.5719  1.589  -0.1179 6.57 0.06219  8.795 1.171  0.5208 0.5472 1 0.6095 0.06584  0.6106
7.857 0.5344  1.634  -0.4941 7.842  0.04499 11.12 1.214 0.5673 0. 6026 1 0.6882 0.05536  0.6893
9.143 0.5032  1.668  -0.8892 9.1 0.03449 13.6 1.257  0.606 0. 6504 1 0.7612 0.04785  0.7623
10. 43 0.4767  1.696  -1.299 10.35 0.02752  16.23 1.3 0. 639 0.6926 1.001  0.8301 0.04212  0.8311
11.71 0.4539  1.718  -1.722 11.59 0.02262 19 1.386 0.6923 0.764  1.001  0.9587 0.03387  0.9597
13 0. 434 1.737  -2.155 12.82 0.01902  21.89 1.429 0.7141 0.7948 1.001  1.02 0.03078  1.021
14. 29 0.4165  1.754  -2.597 14.05 0.01628 24.92 2.714  0.9297 1.193  1.001  2.523  0.3981 2.524

144.1 0.1385  1.977 -56.91 132.4 0.223  701.7 4 0. 9682 1.318  1.002  3.873  0.1246 3.874

286.9 0.0985  2.006 -120.9  260.1 0.02911 1953 5.286  0.9819 1.38 1.002  5.19 0.06234  5.191

429. 6 0.08057 2.019 -186 387.2 0.01293 3569 6.571 0.9884 1.418  1.003  6.494  0.03757  6.496

572.3 0.06984 2.026 -251.8  513.9 0.007719 5479 7.857  0.9919 1.443  1.003 7.793  0.02515  7.794

715 0.0625  2.032 -318 640. 4 0.005271 7645 9.143  0.994 1.461  1.004 9.088  0.01802  9.089

857. 7 0.05708 2.036 -384.5  766.7 0.003892 10040 10.43  0.9954 1.474  1.004 10.38 0.01356  10. 38

1000 0.05286 2.039 -451.1  892.9 0.003026 12640 11.71  0.9963 1.485  1.005 11.67 0.01057  11.67

1143 0.04945 2.041 -518 1019 0.002439 15430 13 0. 997 1.493  1.005 12.96 0.008471 12.96

1286 0.04663 2.043 -585 1145 0.002021 18410 14.29  0.9975 1.5 1.006 14.25 0.006942 14.25

1429 0.04424 2.045 -652.1 1271 0.00171 21550 144.1 1 1.563  1.057 144.1 0. 063 144.1

136. al =-2 -0.7 -0.7 a=-1.4 qg=-2.8 286.9 1 1.567  1.114 286.9 0.003452 286.9
1 Y 00169[30 0 [iol o - 0 0 429. 6 1 1.568  1.171 429.6 0.001158 429.6

1.043 0.2837  0.2871 1 0.2953  0.2861 0.2963 572.3 1 1.569  1.228 572.3 0.0005805 572. 3
715 1 1.569  1.285 715 0.0003488 715
1.086 0.3889  0.3995 1 0.4223 0.1124 0. 4233 g7 7 1 1260 1 345 8597 0 0009357 857 7
1.129 0.4619  0.4816 1 0.5228 0.08215 0.5239 ' ' ' ' ' '
111 05178 0 5478 1 0 6101 0 06614 0 o113 1000 1 1.569  1.399 1000 0. 0001663 1000
1.214 0.5625  0.6035 0.9998 0.6892 0.05576 0. 6906 1143 1 1.57 1.456 1143 0.0001248 1143
1286 1 1.57 1.513 1286 9. 709e- 005 1286
1. 257 0.5995  0.6519 0.9994 0.7627 0.04831 0. 7643 1399 1 1oy 157 1409 2 600 005 1439
1.3 0.6305  0.6945 0.9989 0.832  0.04263 0. 8339 o : : - fove-
1.343 0.6571 0.7326 0.9983 0.8981 0.03813 0. 9005 141, a =-2 [0=0.722 [,=0 ay=-1.444 g =-2.888
1.386 0. 68 0.7671 0.9977 0.9617 0.03445 0. 9645 1 0. 001664 0 1 0 0.2716 0
1.429 0.7 0.7984 0.9969 1.023  0.03137 1.027 1.039  0.2692 0.2726 1 0.2796  0.1085  0.2796
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Prolongation of app. 4 Prolongation of app. 4

R/R, 5 @ X/R, y/R, JAY/) tc, /R, R/R, 5 @ X/R, y/R, JAY) tc, /R,
1.077  0.3616 0.3811 0.9997 0.4006  0.08263 0.4008 1.113  0.0002331 0.539  0.9553 0.5713  0.01016  0.5916
1.116  0.41 0.4637 0.9977  0.499 0.07096 0.5 163. ' =-2 Bo=0.9 Bo=0.3 & =-1.8 a=-3.6
1.154  0.4294 0.5347 0.9929 0.5881  0.06509 0.5913 1 0.001491 0 " 0 0 0
1.193  0.4271 0.5998 0.9844 0.6731  0.06268 0.6809 1011 0. 1478  0.147 1 0. 149 0. 1469 0. 1494
1.231 0. 4069 0.6625 0.9706 0.7572  0.06322 0.7729 1022  0.2074 0. 2084 1 02115 0 06051 0 2119
1.27 0. 3698 0.7257 0.9497 0.8425  0.06761 0.8718 1033 02516 0 2543 1 0.2589  0.04582 0. 2603
1.308  0.3135 0.7933 0.9176 0.9322  0.08024 0.9841 1044 02867 0 2925 . 0.3011  0.03822 0 3015
1.347  0.2285 0.8735 0.8646 1.032 0.1745  1.126 1056  0.3138 0. 326 1 0. 338 0 03352 0. 3384
1.385 0 1.048  0.6915 1.2 0 1.454 1. 067 0.3327 0.3565 0.9996  0.3722 0. 03047 0.3727
151 a°=-2 Lo =0.815 Bo=0 a=-1.63 a=-3.26 1.078 0. 3425 0.385 0. 9989 0. 4048 0. 02856 0. 4056
1 0. 001567 0 1 0 0 0 1.089  0.3418  0.4126 0.9975  0.4366  0.0276 0. 438
1.023  0.2095 0. 2105 1 0.2137  0.2095  0.2138 1.1 0.3287  0.4402 0.9951  0.4687  0.02758  0.471
1.045  0.2902 0. 2954 1 0.3043  0.08482 0. 3044 1.111 0.3 0.469  0.9911  0.5022  0.0288 0. 5062
1.068  0.3434 0.3593  0.9999 0.3756  0.06398 0.3758 1.114  0.2897  0.4766 0.9898  0.511 0.007618 0.5154
1.091  0.3755 0.4134  0.9989 0.4382  0.05401 0. 4387 1.117  0.278 0.4845 0.9882  0.5201  0.007874 0.5252
1.113  0.3888 0.4621  0.9967 0.4964  0.04872  0.4979 1.119  0.2644  0.4927 0.9863  0.5295  0.0082 0.5355
1.136  0.3838 0.5083  0.9925 0.553 0. 04626 0. 5564 1.122  0.2489  0.5013 0.9841  0.5393  0.008621 O.5463
1.182  0.3137 0.6035  0.9729 0.6706  0.04897 0. 6843 1.125  0.2309  0.5105 0.9816  0.5497  0.009178 0.5579
1.204  0.2343 0.6612  0.9505 0.7396  0.05778 0.7666 1.128  0.2097  0.5204 0.9785  0.5608  0.009944 0.5705
1.227 0 0.7859  0.8672 0.8681  0.1247  0.9519 1.131  0.1844  0.5315 0.9746  0.573 0.01106  0.5846
o _ _ _ _ 1.133  0.1528  0.5444 0.9695  0.5869  0.01286  0.6011
11'6'1' a(l) 0'();4291 ﬁg =0.9 ﬁlfo =0 %1 =1.8 0‘7 - '3'% 1.136 0. 1096 0.5608 0.9621 0. 6043 0.01643 0. 6222
L0110 1478 0.1479 1 0. 149 0. 1469 0. 1494 1.139 09;0001998 0.5997 0.940%_ 0. 6428 ) 0. 03894 _9.6727
1.022  0.2073  0.2084 1 0.2115  0.06051  0.2119 164. o =-2 B0 =0.9 [o=0.4 xn=-1.8 a=-3.6
1.033  0.2513  0.2543 1 0.2599  0.04584  0.2603 1 0.0014 0 1 0 0 0
1.044  0.285 0.2926 1 0.3013  0.03833  0.3016 1.011  0.1478  0.1479 1 0.149  0.1469  0.1494
1.056  0.3081  0.3265 0.9998 0.3386  0.0339 0. 339 1.022  0.2074  0.2084 1 0.2115 0.06051 0.2119
1.067  0.3184  0.3579 0.9991 0.3737  0.03139  0.3744 1.033  0.2518  0.2542 1 0.2599  0.0458  0.2602
1.078  0.3125  0.3884 0.9975 0.4082  0.03049  0.4094 1.044  0.288 0. 2924 1 0.301  0.03812 0.3014
1.089  0.2846  0.4199  0.9943 0.4439  0.0315 0. 4464 1.056  0.3183  0.3256 1 0.3376 0.03323 0.338
1.1 0.2215  0.4562 0.9875 0.4845  0.03626  0.4898 1.067  0.3435  0.3554 1 0.3712 0.02981 0.3716
1.111 0 0.532  0.9575 0.5637  0.07589  0.5829 1.078  0.3641  0.3827 0.9998  0.4025 0.0273  0.4029
o _ _ _ _ _ 1.089  0.3803  0.4081 0.9995  0.4322 0.02542 0.4328
11'6'2' M 0'0'021 Fo 'OO' ° ﬁfol'o' 1 gl =-1.8 0 a=-3. % 1.1 0.3923 0.4321  0.9989 0.4607 0.02399 0.4615
1011 o0 1478 0.1479 1 0. 149 0. 1469 0. 1494 1.111 0.4 0.455  0.9981  0.4883 0.02293 0.4895
1.123  0.4035  0.4791 0.9967  0.5178 0.0241  0.5201
1.022  0.2074  0.2084 1 0.2115  0.06051  0.2119
1.135  0.4019  0.5026 0.9949  0.5469 0.02353 0.5501
1.033  0.2513  0.2543 1 0.2599  0.04583  0.2603
1.147  0.395 0.5259 0.9924  0.576  0.02328 0.5804
1.044  0.2852  0.2926 1 0.3013  0.03832  0.3016
1.16 0.3824  0.5493 0.9889  0.6054 0.02337 0.6115
1.056  0.3087  0.3265 0.9998 0.3385  0.03386  0.3389
1.172  0.3635  0.5731 0.9844  0.6353 0.02385 0. 6439
1.067  0.32 0.3577  0.9991 0.3735  0.03128  0.3742
1.184  0.3374  0.598  0.9783  0.6664 0.02486 0.6784
1.078  0.316 0.388  0.9977 0.4078  0.03025  0.409
1.196  0.3022  0.6247 0.97 0.6993 0.02668 0.7162
1.089  0.2915  0.419  0.9947 0. 443 0.03098 0. 4453
1.208  0.2545  0.6547 0.9582  0.7355 0.03002 0.7595
1.1 0.2358  0.4538 0.9887 0.4822  0.03485  0.4871
1.22 0.1852  0.6919 0.9395  0.7783 0.03719 0.8144
111 0.1 0.5066  0.9716 0.5391  0.05277 ~ 0.5516 1.232  0.001152 0.7766 0.8789  0.8635 0.08469 0.9421
1.111  0.095 0.5087 0.9706 0.5412  0.001654 0.554 o _ ! ~ -
1.112 0. 0897 0.5104  0.9698 0.543 0.001745  0.5562 165 o =-2 B0 =0.9 [o=0.435 xn =-1.8 a=-3.6
1.112  0.08402 0.5123 0.969 0.5449  0.001855 0.5585 1 0.001491 O 1 0 0 0
1.112  0.0779  0.5142  0.9681 0.5469  0.00199  0.5609 1.011  0.1478  0.1479 1 0.149  0.1469  0.1491
1.112  0.07121 0.5164 0.9671 0.5491  0.00216  0.5636 1.022  0.2074  0.2084 1 0.2115 0.06051 0.2116
1.112  0.06378 0.5188 0.9659 0.5515  0.002385 0.5666 1.033  0.2519  0.2542 1 0.2599  0.04579 0.26
1.113  0.05532 0.5215 0.9646 0.5542  0.002702  0.5699 1.044  0.2886  0.2923 1 0.301  0.03809 0.3011
1.113  0.04523 0.5247 0.963 0.5574  0.003199 0.5739 1.056  0.3201  0.3254 1 0.3375 0.03311 0.3376
1.113  0.03203 0.5289 0.9609 0.5615  0.004162 0.579 1.067  0.3479  0.355 1 0.3707 0.02954  0.3709
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RIR, B
1.078 0.3728
1.089 0. 3953
1.1 0.416
1.111 0. 435
2.111 0. 7946
3.111 0.7759
4. 111 0.7317
5.111 0. 6886
6. 111 0. 6503
7.111 0.6169
8.111 0. 5877
9.111 0. 5621

10. 11 0.5394
11.11 0.5192
112. 1 0.1775
223.1 0. 1264
334.1 0. 1035
445. 1 0. 08972
556. 1 0. 08031
667.1 0. 07335
778.1 0. 06793
889.1 0. 06356
1000 0. 05993
1111 0. 05687
211, o =-4
1 0. 003651
1. 233 0. 5224 0.
1. 467 0.5731 0.
1.7 0.5623 1.
1.933 0. 5279 1.
2.167 0. 4813 1.
2.4 0. 4267 1.
2.633 0. 3648 1.
2.867 0.2934 1.
3.1 0. 204 1.
3.333 0 1.
212. o’ =-4 B
1 0. 003651
1. 233 0.5232 0.
1. 467 0.5751 0.
1.7 0. 5656 1.
1.933 0. 5326 1.
2. 167 0. 4876 1.
2.633 0. 3755 1.
2.4 0. 4349 1
2.867 0. 3078 1.
3.1 0. 2259 1.
3.333 0.1 1.
3.339 0. 09483 1.
3. 345 0. 08936 1.
3.351 0. 08356 1.
3. 357 0.07732 1.
3.363 0. 07056 1.
3. 369 0. 06308 1.
280
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©
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Prolongation of app. 4

XIRy YIR, Ag tc; /R,
1 0. 4016 0. 02682 0. 4017
1 0.4305 0.02465 0.4306
1 0.4579  0.02287 0.458
1 0.484 0.02136  0.4841
0. 9594 1.881 0. 6481 1.923
0. 858 2.99 0.1923 3.188
0.7198 4.048 0.1034 4.514
0.5563 5.081 0.06692  5.924
0. 3742 6.1 0. 04779 7.419
0.1776 7.109 0. 0363 8. 999
-0.03086 8.111 0.02878 10.66
-0.249 9.108 0.02353 12.4
-0.4755 10.1 0.01971 14.22
-0.709 11. 09 0.01681 16.11
-32.08 107.4 0.226  428.2
-70.06 211.8 0.02918 1187
-109 315.8 0. 01295 2165
-148.5 419.6 0. 007726 3322
-188.3 523.3 0.005275 4633
-228.3 626. 8 0.003894 6082
-268.5 730.3 0. 003027 7657
-308.8 833.8 0. 00244 9347
-349.3 937.1 0.002022 11150
-389.8 1040 0.00171 13050
0 =0.3 [10 =0 a, =- 1.2 =-2.4
1 0 0
0. 9895 0. 7363 0.6377 0.743
0.9431 1.123 0. 2326 1.163
0. 866 1. 463 0. 164 1.572
0.7612 1.777 0.1298 1.999
0.629 2.073 0.1101 2.461
0. 4672 2.354 0. 09862 2.975
0. 2703 2.619 0. 0931 3. 565
0. 0261 2. 867 0.09373  4.274
-0.2977 3. 086 0. 1053 5.214
-1.027 3.171 0.2171 7.512
fBo=0.1 & =-1.2 a=-2.4
1 0 0 0
0. 9896 0.7361 0. 6375 0.7427
0. 9439 1.123 0.2321 1.161
0. 8681 1.462 0.1632 1.569
0. 7655 1.775 0.1289 1.993
0. 6365 2.071 0.1089 2.45
0.2894 2.617 0. 09093 3.532
0.4793 2.352 0.09708  2.956
0.05691  2.866 0.09028  4.215
-0.2425 3. 091 0. 09815 5.091
-0.715 3. 256 0. 1379 6. 529
-0.7342 3. 258 0. 005474 6.59
-0.7543 3. 259 0.00577  6.654
-0.7756 3. 26 0.006124 6.723
-0.7984 3.261 0. 006559 6.797
-0.823 3.261 0.007111 6.877
-0.8501 3. 26 0.007841 6.966

826

2.

R/R, B ¢
3.375 0. 0546 1.835
3.381 0. 04456 1. 845
3.387 0. 0315 1. 859
3.393 0. 0002197 1.892
2.13.0° =-4 0 =0.3
1 0. 003651 0
1. 233 0.529 0.638
1. 467 0. 5906 0. 8659
1.7 0.5913 1.024
1.933 0.5688 1. 146
2. 167 0. 5353 1. 246
2.4 0. 4958 1. 333
2.633 0. 4523 1.411
2. 867 0. 4055 1.483
3.1 0. 3551 1.552
3.333 0.3 1.621
3.399 0. 2832 1.641
3. 465 0. 2657 1.661
3.531 0.2474 1.682
3.596 0. 2279 1.704
3.662 0. 207 1.727
3.728 0.1843 1.752
3.794 0. 1588 1.779
3. 86 0.1291 1.81
3.925 0. 09081 1. 849
3.991 0. 0001922 1.942
2.1.4. o’ =- Bo=0.3
1 0. 003651 0
1.233 0. 5404 0. 635
1. 467 0. 6207 0. 8552
1.7 0. 6395 1. 003
1.933 0. 6351 1.114
2.167 0.6198 1. 203
2.4 0. 5992 1.277
2.633 0.5759 1. 339
2.867 0.5511 1. 394
3.1 0. 5257 1. 443
3.333 0.5 1. 487
3.671 0. 4628 1.544
4. 009 0. 4257 1. 596
4. 346 0. 3887 1.643
4.684 0. 3514 1.688
5. 022 0. 3135 1.731
5. 359 0. 2743 1.774
5. 697 0. 2325 1.818
6. 035 0. 1859 1. 865
6. 372 0. 1288 1.92
6.71 0. 0006003 2.042
15. °=-4 [B,=0.3
1 0. 003651 0
1.233 0. 5537 0. 6315
1. 467 0. 6545 0. 8436
1.7 0. 6924 0.9822

Prolongation of app. 4

X/R, y/R, JAY) tc, /R,
-0.8805  3.258 0.008873 7.067
-0.9163  3.254 0.01049  7.187
-0.9622  3.247 0.01363  7.343
-1.07 3.22 0.03265 7.718

[%)=().3 a=-1.2 a=-2.4

1 0 0 0
0. 9907 0.7345  0.636  0.7406
0. 9503 1.117 0.2279 1.152
0. 8846 1. 452 0.1576  1.545
0.7976 1.761 0.122  1.946
0. 6909 2.054 0.1007  2.368
0. 565 2.333 0.0869  2.821
0.4192 2.6 0.07778 3.313
0.2516 2. 856 0.07199 3.857
0.05863  3.099 0.06896 4.471

-0. 1664 3.329 0.06885 5.184
-0.2381 3.391 0.01991 5.41
-0.313 3.451 0.02034 5.649
-0.3925 3.509 0.02096 5.906
-0.4777 3.565 0.0218  6.182
-0.5696 3.618 0.02296 6.485
-0.6703 3.667 0.02462 6.821
-0.783 3.712 0.0271  7.205
-0.914 3.75 0.0312  7.662
-1.079 3.774 0.03948 8.261
-1. 446 3.72 0.09218 9.713

Go=0.5 :=-1.2 a=-2.4

1 0 0 0

0.9929  0.7316 0.633 0. 7365

0.9623  1.107  0.2202  1.133

0.914 1.433  0.148 1.502

0.8522  1.735  0.1112  1.867

0.7791  2.022  0.08865 2.239

0.6961  2.297  0.07354  2.622

0.6042  2.563  0.06279  3.019

0.5039  2.822  0.05482  3.433

0.3955  3.075  0.04874  3.866

0.2794  3.322  0.04401 4.321

0.09733  3.67 0.05728  5.023

-0.1006  4.007  0.05162 5.783

-0.3156  4.335  0.04757 6.613

-0.549 4.652  0.0448  7.526

-0.8032  4.957  0.04316 8.543

-1.082 5.249  0.04267 9.693

-1.393 5.524  0.04363 11.03

-1.748 5.776  0.04693 12.64

-2.183 5.987  0.05575 14.8

-3.046 5.979  0.1216  20.08
G0=0.6632 xn=-1.2 a=-2.4

1 0 0 0

0.9954  0.7282 0.6295 0.7319

0.975 1.096  0.212 1.114

0.9439  1.414  0.1386 1. 459
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Prolongation of app. 4

y/R, JAY) tc, /R,
1.708  0.1014 1.792
1.988  0.07878  2.122
2.259  0.06362  2.453
2.522  0.05283  2.787
2.78 0.0448 3.125
3.033  0.03863  3.468
3.283  0.03376  3.817
6.323  0.2332 8. 849
9.216  0.1005  14.85
12. 04 0.05928  21.71
14. 82 0.04021  29.34
17.58 0.02957  37.67
20.31 0.02292  46.65
23.03 0.01844  56.24
25.73 0.01525  66.39
28. 42 0.01288  77.08
31.09 0.01107  88.29
291.3 0.155 2673
572.7 0.02053 7478
852. 8 0.009132 13690
1132 0.005452 21040
1411 0.003724 29370
1690 0.00275 38570
1969 0.002138 48580
2247 0.001724 59330
2525 0.001428 70780
2803 0.001209 82880
0.7 m®n=-1.2 a=-2.4
0 0 0
0.7273  0.6287 0. 7307
1.093 0.21 1.109
1. 409 0. 1364 1. 448
1.702 0.09923  1.774
1.98 0.07668  2.095
2.249 0.06161  2.416
2.512 0. 0509 2.738
2.769 0.04296  3.062
3.022 0.03686  3.39
3.271 0.03206  3.721
6. 332 0.2158 8. 349
9.277 0.08797  13.58
12.18 0.04938  19.29
15. 05 0.03204  25.36
17. 92 0.02261  31.72
20. 77 0.01688  38.33
23.61 0.01311  45.14
26. 45 0.0105  52.13
29.29 0.008601 59.26
32.12 0.007182 66. 52
316.8 0.072 934. 2
629. 4 0.004432 1934
942 0.001501 2941
1255 0.0007554 3952
1567 0.0004547 4966

R/R,

2001
2334
2667
3000
3333

1
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n
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0.3282
0. 3279
0. 3277
0. 3276
0. 3275

217. o’ =-4

. 003651
5787
7158
7854
8262
852
8692
8811
8895
8956
9
9111
9079
9047
9022
9003
8987
8975
8966
8958
8951
8881
8877
8876
8875
8875
8874
8874
8874
8874
. 8874

0&0 =-

. 002828
4151
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5891
602
587
5499
4924
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. 2967

0
0’10 =-4
0. 002828
0. 4152
0. 5363

OO0 O0000000000000000000000000000
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Prolongation of app. 4

@ X/R, y/R, JAY) tc, /R,
921 -686.5 1880 0. 0003038 5980
921 -801.2 2193 0. 0002173 6995
921 -915.9 2505 0. 0001631 8011
921 -1031 2818 0. 000127 9027
922 -1145 3130 0. 0001017 10040
=0.3 £, =0.9 @ =-1.2 a=-2.4
0 1 0 0 0
. 6253 1 0.7219 0. 6233 0.7235
8238 0. 9965 1.076 0.1985 1.08
9483 0.9913 1.381 0. 1245 1.39
036 0.9848 1. 664 0. 08804 1.679
103 0.9777 1.934 0. 06635 1. 957
155 0. 9699 2.195 0. 05212 2.228
197 0. 9617 2.451 0. 04218 2.494
232 0. 9531 2.704 0. 03491 2.758
261 0. 9442 2.953 0. 02941 3.019
286 0. 9352 3.199 0. 02515 3.279
443 0. 8103 6.281 0. 1565 6. 579
498 0.6761 9. 309 0. 05578 9. 877
527 0.5394 12. 32 0. 02875 13.19
545 0. 4016 15.33 0. 01756 16. 51
556 0. 2631 18.33 0. 01184 19. 84
565 0.1243 21.33 0. 008527 23.17
571 -0.01484 24.33 0.006434 26.51
576 -0.1541 27.33 0. 005028 29.86
58 -0.2935 30. 33 0.004038 33.21
584 -0.433 33.33 0. 003314 36.56
614 -14. 56 336 0. 03 377.3
616 -30.09 668. 7 0. 001666 752.3
616 -45.61 1001 0. 0005592 1127
617 -61. 14 1334 0. 0002803 1503
617 -76.67 1667 0.0001684 1878
617 -92.2 1999 0.0001124 2253
617 -107.7 2332 8. 032e- 005 2628
617 -123.3 2664 6. 027e- 005 3004
617 -138.8 2997 4.689e- 005 3379
617 -154.3 3330 3. 752e- 005 3754

[%0 =0.5 [zo =0 a =-2 a =-

0 1 0 0 0
0. 429 1 0. 4576 0. 427 0. 458
0.5872 0.999 0. 6648 0. 1582 0. 6661
0. 7005 0. 9939 0. 838 0.1133 0. 8426
0.7924 0.983 0. 9969 0. 09186 1.01
0.8722 0. 9647 1.149 0. 07981 1.177
0. 9453 0. 9369 1. 297 0. 07305 1.353
1. 016 0. 8961 1. 445 0. 07031 1.544
1.088 0. 8364 1.594 0. 07199 1.765
1.17 0. 742 1.749 0. 08206 2. 046
1.341 0. 4559 1. 947 0.1712 2.708
Ao =0.5 ,Bro =0.1 (2} =-2 a=-4

0 1 0 0 0
0. 429 1 0. 4576 0. 427 0. 458
0.5872 0.999 0. 6648 0. 1581 0. 666
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Prolongation of app. 4 Prolongation of app. 4

R/R, @ X/R, y/R, JAY/) tc, /R, R/ 5 @ X/R, y/R, JAY) tc, /R,
1.3 0.5898 0.7004  0.9939 0.8379  0.1132 0. 8425 2.087 0.4509 1.184 0.7876 1.933  0.02204 2.186
1.4 0. 6034 0.7921  0.9833  0.9966  0.09171 1.009 2.131  0.4231 1. 206 0. 7596 1.991  0.02242 2.286
1.5 0. 5894 0. 8717 0. 9653 1.148 0.07956 1.176 2.174  0.3928 1.229 0.7281  2.049  0.02305 2.393
1.6 0. 5536 0.9444  0.938 1. 296 0.07267 1.351 2.218 0.3595 1.253 0.6923  2.107 0.02402  2.509
1.7 0. 4979 1. 014 0. 8983 1. 443 0. 0697 1.541 2.262 0.3222 1. 279 0.6509  2.166  0.02549 2.637
1.8 0. 4204 1. 085 0. 8405 1.592 0.07091 1.758 2.305 0.2795 1. 307 0.6018  2.225  0.02778 2.782
1.9 0. 3107 1. 165 0. 7508 1. 745 0.07959  2.031 2.349  0.2285 1.338 0.5411  2.286  0.03168 2.953
2 0.1 1.291 0. 5524 1. 922 0.1264  2.516 2.392  0.1617 1.378 0.4583  2.348  0.03972 3.177
2.001  0.09488 1. 294 0.5471 1. 925 0.002876 2.528 2.436  0.0004409 1.47 0.2453  2.424  0.09188 3.714
2.002 0. 08947 1. 297 0.5416 1. 928 0.003037 2.54 0 —_ = = = =
2.003  0.0837 1.3 0.5356  1.93 0.00322 2.553 5'2'5 (?'1002828 ﬁoo 0.5 7 0. 70 a 02 a 04
2.004  0.0775 1. 304 0. 5292 1. 933 0.00346 2.567 11 0. 2161 0. 4289 1 0.4575 04269 0. 4579
2.006  0.07076 1. 307 0. 5222 1. 936 0.003763 2.582
1.2 0. 547 0. 5857 1 0.6633  0.1567 0. 664
2.007 0. 06329 1.312 0.5145 1.94 0.004157 2.598
1.3 0. 6222 0.6951 0.9984  0.8326  0.1094  0.8344
2.008  0.05482 1.316 0. 5056 1. 943 0.00471 2.617
1.4 0. 6676 0.7801  0.9952 0. 9847 0.08506  0.989
2.009  0.04477 1.322 0. 495 1. 947 0.005584 2.64
1.5 0. 6946 0.85 0.99 1.127 0.06983 1.136
2.01 0. 03166 1.329 0. 4811 1. 952 0.007267 2.669
ot 0 000589 1 347 0 447 1 oe1 0 0176 574 1.6 0. 7092 0.9093  0.9829 1. 262 0.05931 1.278
: 5 : : : : : 1.7 0. 7151 0.9609 0.9738 1.393 0.05159  1.418
223. a =-4 Lo =0.5 Lo =0.3 a =-2 a=-4 1.8 0.7145 1. 007 0. 9626 1.521 0.04569 1.558
1 0. 002828 0 1 0 0 0 1.9 0. 7091 1.048  0.9493 1. 646 0.04105 1.698
1.1 0. 4153 0. 429 1 0.4576  0.427 0. 458 2 0.7 1.085  0.934 1. 769 0.03733 1.84
1.2 0.5381 0.5869  0.9992 0.6646 0.1579 0. 6657 2.202 0.673 1.152 0. 896 2.012 0.06684 2.135
1.3 0. 5953 0.6995  0.9947 0. 837 0.1126 0.841 2.405 0.6377 1.21 0.8488  2.25 0.05824  2.443
1.4 0. 6146 0.79 0.9854  0.9945  0.09049 1. 006 2.607 0.5964 1. 262 0.7916  2.484 0.05226 2.771
1.5 0. 6082 0.8676  0.97 1.144  0.07765 1. 169 2.81  0.5502 1.31 0.7232 2.715 0.04815 3.124
1.6 0. 5824 0.9374  0.947 1.29 0. 0698 1.336 3.012  0.4992 1.356  0.642 2.943 0.04554  3.51
1.7 0. 5402 1. 003 0. 9146 1.433  0.06533 1.514 3.215  0.4431 1.4 0.5453  3.168 0.04432 3.94
1.8 0. 482 1. 067 0. 8697 1.576  0.06376 1.71 3.417  0.3804 1.445  0.4285  3.39 0.04471  4.432
1.9 0. 4053 1.132 0. 8068 1. 72 0. 0657 1. 935 3.62 0.3076 1.493  0.2829  3.609 0.04751 5.021
2 0.3 1. 207 0.7125 1.869  0.07431  2.218 3.822 0.2153 1.548  0.0855  3.821 0.05585 5.796
2.011  0.285 1.217 0. 6974 1.887 0.009724  2.257 4.025 0.001043 1.669 -0.3943  4.005 0.1205  7.681
2.023  0.269 1. 227 0. 6821 1.904  0.01015  2.298 0 _._ - - —. —.
2.034 0. 2519 1.238 0. 6655 1. 922 0. 01067 2.342 %'2'6' 511002822 '&00 0.5 1'8’0 0. 80 @ % a g
2.046  0.2335 1. 249 0. 6473 1.941  0.01133  2.39 11 0. 4164 0. 4289 1 0.4575  0.4269  0.4579
2. 057 0.2134 1. 261 0. 6271 1.959  0.01217 2. 441
1.2 0. 5504 0. 5852 1 0.6629  0.1563 0. 6634
2.069  0.1911 1. 274 0. 6043 1.978  0.01329  2.497
1.3 0. 6319 0.6935  0.9997 0.831 0.1083  0.832
2.08 0. 1656 1. 289 0.578 1.998  0.01491  2.561
1.4 0. 6864 0.7768 0.9985  0.9814  0.08327 0.9834
2.092  0.1354 1.307 0.5459  2.019  0.01747 2.637
1.5 0. 7243 0.8442  0.9965 1.121 0.06746 1.125
2.103  0.09582 1.329 0.5031  2.042 0.02249  2.736
5 114 0 0002458 1 383 0 2952 5 075 0 05259 2 oo 1.6 0. 7512 0.9007  0.9937 1. 254 0.05645 1.26
: 0 : : : : : 1.7 0. 7705 0.949  0.9903 1.382 0. 0483 1.392
224, o =4 Lo =0.5 Lo =0.5 a =2 a=-4 1.8 0.7841 0. 991 0.9861 1. 506 0. 04203 1.52
1 0.002828 0 1 0 0 0 1.9 0. 7936 1.028  0.9813 1. 627 0. 03705 1. 647
1.1 0.4156  0.429 1 0.4576  0.427 0. 458 2 0.8 1.061  0.9759 1.746  0.03302 1. 772
1.2 0. 5417 0.5864  0.9995  0.6641 0.1574  0.665 5.693 0.6532 1.484  0.4917 5. 672 0. 4233 6. 774
1.3 0. 6062 0. 6977 0. 9962 0.8352 0.1113  0.8383 9.386 0.5169 1.602 -0.2896 9.381  0.1173 13.17
1.4 0.6363  0.7859  0.9895  0.9904 0.08819 0.9987 13.08  0.4233 1.666  -1.237 13.02 0.06384 21.09
1.5 0.6441  0.8601  0.9786 1.137 0.07421 1.155 16.77  0.3526 1.709  -2.308 16. 61 0.04335  30. 67
1.6 0. 6362 0. 925 0. 9629 1.278  0.06497 1.31 20.46  0.2949 1.742 -3.488 20. 16 0.03321 42.14
1.7 0.6161  0.9837 0.9418 1.415  0.05862 1.47 24.16  0.2448 1. 77 -4.774 23. 68 0.02767  55.89
1.8 0. 5862 1. 038 0. 9144 1.55 0.05428 1.636 27.85 0.1986 1.794 -6.178 27.16 0.02475  72.62
1.9 0. 5474 1. 089 0. 8796 1.684  0.05151 1.812 31.54 0.1531 1.818 -7.73 30. 58 0.02389  93.72
2 0.5 1.14 0. 8359 1.817 0.05017 2.003 35.24 0.1028 1.844 -9.518 33.93 0.02595 122.8
2.044 0.4764 1.162 0.8126 1.875  0.02184 2.092 38.93  0.0005904 1.896 -12.46 36. 88 0.05216 196.5
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Prolongation of app. 4 Prolongation of app. 4

R/R, 5 @ X/R, y/R, JAY/) tc, /R, R/R, 5 @ X/R, y/R, JAY) tc, /R,
2270 =-4 -0.5 -0.8066 a =-2 qg=-4 1.343  0.4598  0.7579  0.9753  0.9231  0.05006  0.9413
1 Y. 002828 liﬂ) liO 0 Y 0 1.386  0.3555  0.8139  0.9515  1.007 0.05598  1.046
11 0 4164 0 4289 1 0.4575 0. 4269 0. 4579 1.429 0.1 0.9062  0.8811  1.124 0.09225  1.229
1.429  0.09491 0.9076  0.8797  1.126 0.001617  1.232
1.2 0.5506  0.5852 1 0.6628 0.1563 0. 6633
1.429  0.08952 0.9093  0.8779  1.128 0.001708 1.236
1.3 0.6326  0.6934 0.9998  0.8309 0.1082 0.8318
1.43 0.08378 0.9111  0.8761  1.13 0.001817 1.24
1.4  0.6877  0.7765 0.9987  0.9811 0.08315  0.983
1.43 0.0776  0.9131  0.8741  1.132 0.001951 1.243
1.5  0.7264  0.8438 0.9969  1.121  0.0673 1.124
1.43 0.07087 0.9152  0.8719  1.134 0.002119 1.248
1.6  0.7541  0.9001 0.9945  1.253  0.05626  1.259
1.431  0.06341 0.9176  0.8694  1.136 0.002342 1.253
1.7  0.7743  0.9482 0.9914  1.381  0.04809  1.39
1.431  0.05494 0.9202  0.8666  1.139 0.002656  1.258
1.8 0.7889  0.99 0.9877 1.505  0.0418 1.518
1.431  0.04488 0.9234  0.8632  1.142 0.003148 1.264
1.9  0.7993  1.027 0.9834  1.626  0.03681  1.644
1.431  0.03175 0.9275  0.8587  1.145 0.004098 1.273
2 0.8066  1.06 0.9785  1.744  0.03277  1.768 1.432  0.0004817 0.9373  0.8475  1.154 0.009873  1.293
3.8  0.7713  1.354 0.8174  3.711  0.294 4.014 ; : ' ' ' '
5.6 0. 6959 1. 469 0.5703 5.571 0.1148 6. 473 233. o =-4 Lo =0.7 Lo =0.3 a =-2.8 a=-5.6
7.4  0.6342  1.534 0.2724  7.395  0.0652 9.187 1 0. 00239 0 1 0 0 0
9.2  0.5852  1.577 -0.05992 9.2 0.04333 12.14 1.043  0.2837  0.2873 1 0.2955  0.2853  0.2956
11 0.5456  1.609 -0.4174  10.99 0.03144  15.33 1.086  0.3892  0.3997 1 0.4225  0.1124  0.4226
12.8  0.5128  1.633 -0.7945 12.78 0.02415 18.74 1.129  0.4611  0.4818 1 0.523 0.08215 0.5231
14.6  0.4852  1.652 -1.187  14.55 0.0193  22.35 1.171  0.5107  0.5484  0.9996  0.6107  0.06659 0.6111
16.4  0.4616  1.668 -1.593  16.32 0.01588  26.16 1.214  0.5402  0.6056  0.9983  0.6912 0.05719  0.6924
18.2  0.4411  1.681 -2.01 18. 09 0.01336  30.15 1.257  0.5495  0.657 0.9955  0.7678 0.05137  0.7708
20 0.4231  1.693 -2.436  19.85 0.01144 34.31 1.3 0.5369  0.7051  0.99 0.8425 0.0481 0. 8495
201.8  0.14 1.85 -55. 65 194 0.157  971.2 1.343  0.4989  0.7523  0.9805  0.9176 0.04719  0.9319
401.6  0.09952 1.871 -118.7 383.7 0. 02058 2705 1.386  0.4276  0.8017  0.9638  0.9957 0.04942  1.024
601.4  0.0814 1.88  -183 572.9 0.009144 4943 1.429 0.3 0.8606  0.9314  1.083  0.05891  1.141
801.2  0.07056 1.885 -247.9 761.9 0.005457 7591 1.432  0.2858  0.8665  0.9271  1.091  0.005529 1.152
1001 0.06314 1.889 -313.3 950. 7 0.003727 10590 1.435  0.2707  0.8723  0.9229  1.099  0.005793 1.164
1201 0.05766 1.892 -378.9 1139 0.002752 13910 1.439  0.2543  0.8784  0.9183  1.107  0.006113 1.177
1401 0.0534  1.894 -444.8 1328 0.002139 17510 1.442  0.2364  0.8849  0.9132  1.116  0.00651  1.19
1600 0.04996 1.896 -510.9 1517 0.001725 21390 1.445  0.2167  0.892 0.9074  1.125  0.007017 1.205
1800 0.04711 1.897 -577.1 1705 0.001429 25510 1.448  0.1946  0.8997  0.9008  1.134  0.007694 1.221
2000 0.0447  1.898 -643.5 1894 0.001209 29860 1.452  0.1693  0.9083  0.8929  1.145  0.008657 1.239
231 af=-4 -0.7 -0 @& =-2.8 a=-5.6 1.455  0.1388  0.9185  0.8833  1.156  0.01018  1.261
1 0 00378 [§° 1 Fo o 0 0 1.458  0.09852 0.9316  0.87 1.171  0.01315  1.289
1043 02837 0 2869 1 0.2051 0. 2839 0. 2052 1. 462 g.oooa 0.9632  0.8345 1.2 0.03152  1.356
1.086  0.3892  0.3993 1 0.4221  0.1124 0. 4222 234. a®=-4 By =0.7 [0 =0.5 & =-2.8 a=-5.6
1.129  0.4605  0.4815 1 0.5226  0.08219  0.5228 1 0. 00239 0 1 0 0 0
1.171  0.5085  0.5482  0.9998  0.6105  0.06675  0.611 1.043  0.2837  0.2873 1 0.2955  0.2853  0.2956
1.214  0.5343  0.6058  0.9982  0.6915  0.05761  0.6929 1.086  0.3893  0.3997 1 0.4225  0.1123  0.4226
1.257  0.5366  0.6581  0.9946  0.7689  0.05223  0.7726 1.129 0. 462 0. 4817 1 0.5229  0.08208 0.523
1.3 0.5124  0.7078  0.9877  0.8452  0.04976  0.854 1.171  0.5146  0.548 0.9999  0.6103  0.0663  0.6106
1.343  0.4547  0.7583  0.9749  0.9235  0.05046  0.9421 1.214  0.5507  0.6045  0.9991  0.6902  0.05647 0.6909
1.386  0.3455  0.8153  0.9501  1.009 0.05701  1.048 1.257  0.5717  0.6545  0.9974  0.7653  0.04993 0.7671
1. 429 0 0.9328  0.8509  1.148 0.1175 1.283 1.3 0.5779 0.7 0.9943  0.8375  0.04553 0.8415
232 a0 =-4 -8 =0.1 & =-2.8 -2.8 aq=-56 1.343  0.569 0.7427  0.9892  0.9081  0.04271 0.9161
1 10 00239 [%O()[%) 1 L 0 0 0 1.386 0. 5438 0.784 0.9812 0.9785 0.04128  0.9929
1.043  0.2837  0.2873 1 0.2955  0.2853 0. 2956 1.429 0.5 0.8253  0.969 1.05 0.04135  1.075
1086 03892 0 3997 1 0 4200 0 1124 0. 4228 1.442  0.4819  0.8381  0.9644  1.072 0.01313  1.102
1.455  0.4614  0.8515  0.9587  1.095 0.01342 1.13
1.129  0.4606  0.4819 1 0.523 0.08219  0.5232
1.468  0.4379  0.8654  0.9521  1.118 0.01382 1.16
1.171  0.5087  0.5486  0.9995  0.6109  0.06673  0.6113
1.482  0.4112  0.8797  0.9444  1.142 0.01437 1.191
1.214  0.5349  0.6062  0.998 0.6918  0.05757  0.6932 1495 0 3806 0 8949 0 9383 1 166 0 01514 1 295
1.257  0.5381  0.6583  0.9944  0.7691  0.05214  0.7728 : : : : : : :
1.3 0.5152  0.7079  0.9877  0.8453  0.04957  0.8538
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Prolongation of app. 4 Prolongation of app. 4

R/R, 5 @ X/R, y/R, JAY/) tc, /R, R/R, 5 @ XIR, y/R, JAY/) tc, /R,
1.508  0.3449  0.9111  0.9244 1. 192 0.01623 1.261 572.3 0. 09866 1.784 -120.8 559.4  0.005465 3886
1.522 0.3025  0.929 0. 9109 1.219 0.01787  1.302 715 0. 08832 1.787 -153.6 698.3  0.003731 5419
1.535  0.25 0.9495  0.8934 1. 248 0.02056 1.35 857. 7 0. 08066 1.79  -186.5 837. 2 0.002754 7113
1.548  0.1789  0.9756 0. 868 1.282 0.02602 1.412 1000 0.07471 1.792  -219.7 976 0.002141 8954
1.561  0.0002995 1.036 0. 7953 1. 344 0.06083  1.559 1143 0. 0699 1.794 -252.9 1115 0.001726 10930
235 a=-4 By =0.7 fBo=0.7 @ =-2.8 a=-5.6 1286 0. 06592 1.795 -286.3 1254 0.00143 13030
1 0. 00239 0 1 0 5 0 1429 0606254 1.797 -319.8 1392 0.00121 15260
1.043  0.2837 0.2873 1 0.2955  0.2853  0.2956 241, o =- Bo=0.9 [o=0 & =-3.6 a=-7.2
1.086  0.3894  0.3997 1 0.4225  0.1123  0.4226 1 0. 003333 0 1 0 0 0
1.129  0.4634  0.4816 1 0.5228  0.08197 0.5229 1.011 0. 1479 0. 1481 1 0. 1492 0.1451  0.1492
1.171  0.5204  0.5475 1 0.6098  0.06587 0.6099 1. 022 0. 2074 0. 2086 1 0.2117 0.0605  0.2117
1.214  0.566 0. 603 1 0.6886  0.05545 0.6887 1. 033 0. 252 0. 2544 1 0.2601  0.04579  0.2601
1. 257 0.6034  0.6509 1 0.7618  0.048 0. 762 1. 044 0. 2886 0. 2925 1 0. 3012 0.03808  0.3012
1.3 0.6345  0.6933  0.9999  0.8308  0.04236 0.8312 1. 056 0. 3197 0. 3256 1 0. 3377 0.03313  0.3377
1.343  0.6604  0.7312 0.9996  0.8967 0.03791 0.8974 1. 067 0. 345 0. 3553 1 0.371 0.02966  0.3711
1.386  0.682 0.7655  0.9991  0.9602 0.03431 0.9612 1.078 0. 3607 0.3826 0.9999 0.4024  0.02731 0.4024
1.429 0.7 0.7968  0.9985 1. 022 0.03132 1.023 1. 089 0. 3557 0.4088 0.9991 0.4329  0.02625 0.4333
1. 637 0.75 0.9196  0.9925 1. 302 0.1226 1. 309 1.1 0. 3033 0.4365 0.9968 0.4651  0.0277 0. 4664
1.846  0.7586 1.011 0. 9805 1. 564 0.09125 1.585 1.111 0 0.4882 0.9813 0.5211  0.05166 0.5298
2.055  0.7412 1. 084 0. 9612 1.816 0.07318 1.863 0 _._ - — —_ —.
2.263 0. 7055 1.146 0.9331 2. 062 0.06189 2.151 2i4'2' alo 003233 Bo 00' 9 '8’10 0. 10 @ %‘ 6 a 0 7.2
2. 472 0. 6555 1. 201 0.8945  2.305 0.05469 2. 457 1011 0. 1479 0. 1481 1 0. 1492 0. 1451 0. 1492
2.681  0.5927 1.251 0. 843 2.545 0.05035 2.791

1. 022 0. 2074 0. 2086 1 0.2117 0. 0605 0.2117
2.89 0. 5164 1. 299 0. 7747 2.784 0.04847  3.167
1. 033 0. 252 0. 2544 1 0.2601  0.04579  0.2601
3.098  0.4228 1. 349 0.6819  3.022 0.04951  3.612 1 o0aa 0. 2886 0. 2908 1 0. 3012 003808 0. 3012
3. 307 0. 2989 1. 405 0.5454  3.262 0.05623 4.19 1 os6 0. 3197 0. 370 1 0. 3377 0. 03312 0. 3377
3.516  0.001635 1.523 0. 1697 3.512 0.1174  5.58 : : : : :
0 1. 067 0. 3452 0. 3553 1 0.371 0.02965  0.371
236. o =-4 f[o=0.7 f[o =0.7112 o =-2.8 a=-5.6 1.078 0.3613 0.3825 0.9999 0.4023 0.02728 0. 4024
1 0. 00239 0 1 0 0 0 1. 089 0. 3579 0.4087 0.9992 0. 4327 0.02616  0.4331
1.043  0.2837 0.2873 1 0.2955  0.2853 0. 2956 1.1 0.3103 0.4361 0.9971 0.4646  0.02735  0.4659
1.086  0.3894  0.3997 1 0.4225  0.1123 0. 4226 1.111 0.1 0.4775 0.9868 0.5106  0.04143  0.5166
1.129  0.4635  0.4816 1 0.5228  0.08197 0.5229 1.111 0. 095 0.4787 0.9863 0.5119  0.0007199 0.5179
1.171  0.5207 0. 5475 1 0.6098  0.06585  0.6099 1.111 0.08969  0.4795 0.986  0.5127 0.00076  0.5188
1.214  0.567 0. 6028 1 0.6885  0.05538  0.6886 1.111 0. 08402 0.4803 0.9856 0.5135  0.0008079 0.5198
1. 257 0.6055  0.6507 1 0.7615  0.04788  0.7617 1.111 0.07789  0.4812 0.9853 0.5144  0.0008666 0.5209
1.3 0. 638 0. 6929 1 0.8304  0.04217 0. 8306 1.112 0.07121  0.4821 0.9849 0.5154  0.0009409 0.5221
1.343  0.666 0. 7305 1 0.8961  0.03765  0.8963 1.112 0.06378  0.4831 0.9844 0.5164  0.001039 0.5233
1.386  0.6901  0.7645 1 0. 9592 0.03396  0.9594 1.112 0.05531  0.4843 0.9839 0.5176  0.001178 0.5248
1.429  0.7112 0. 7954 1 1.02 0. 03089 1. 021 1.112 0.04523  0.4857 0.9832 0.519 0.001395  0.5265
2.714  0.8692 1.203  0.9761  2.533 0. 408 2.572 1.112 0.03204  0.4875 0.9824 0.5209  0.001814 0.5288

4 0.8378 1.341  0.9118  3.895 0. 1379 4.072 1.112 0.001263 0.4919 0.9801 0.5252 0.00441  0.5342
5.286  0.7901 1.415  0.8184  5.222 0. 07452 5. 652 243. af =-4 0=0.9 [, =0.3 @ =-3.6 a=-7.2
6.571  0.7447 1.464  0.7036  6.534 0. 04817 7.329 ! 0. 002108 0 ] 0 5 0
7.857 0. 7045 1.498  0.5726  7.836 0.03434  9.105 1011 0 1479 0. 1483 1 0.1494 0. 1463 0. 1494
9.143  0.6694 1.524  0.4287 9.133 0.02604 10.98 1 022 0. 2074 0. 2088 1 0.2119 0. 0605 0. 2119
10. 43 0. 6386 1.545  0.2741  10.42 0.02061 12.95 1033 0 2519 0. 2546 1 02603 0 04579 0 2803
11.71 0. 6114 1.561  0.1107 11.71 0. 01684 15 : : : : : :

1.044  0.2886 0. 2927 1 0.3014  0.03809  0.3014
13 0.5873 1.575 -0.06021 13 0.01408 17.15
1.056  0.3199 0. 3258 1 0.3379  0.03312 0. 3379
14. 29 0. 5657 1.587 -0.2377 14.28 0.01201 19.38 1 oe7 0. 3464 0. 3524 1 0. 3712 0. 0296 0. 3712
144.1 0. 1951 1.748 -25.45 141.9 0.161  502.1 1078 0 3666 0 3825 09999 0. 4073 0. 02707 0. 2023
286. 9 0. 139 1.769 -56.47 281. 2 0. 02065 1390 : : : : : : :
420 6 0 1138 1778 oe 4l 420 4 0 000562 2534 1.089  0.3752 0.4079  0.9995 0.432 0.02544  0.4322
: : : - oo : : 1.1 0. 3614 0.433 0.9985 0.4615  0.02501  0.4621
1.111 0.3 0. 46 0.9956 0.4933  0.02708 0. 4952
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Prolongation of app. 4 Prolongation of app. 4

RIR A ¢ X/R, iR Ag € /Ry RIR, G x/R, y/R Ag tc; /R,
1.112  0.2892 0. 463 0.9951 0.4968  0.003018 O.4987
112.1 0.2493  1.693 -13.68  111.3 0.165 300. 1
1.113  0.277 0.4662  0.9945 0.5004  0.003135 0.5026
223.1 0.1781  1.714 -31.82  220.8 0.02075  848.3
1.114  0.2632 0.4694  0.9939 0.5041  0.003279 0.5067 3341 0. 146 1723  -20.68 330 2 0. 009186 1542
1.116  0.2475  0.4729  0.9931  0.5081  0.003461 0.511 aas 1 01267 1799  -69.93 4396 0. 005475 2369
1.117  0.2295 0.4766  0.9922  0.5122  0.003698 0.5156 cea 1 0.1134 1 732 -89 4> a8 9 0.003736 3291
1.118  0.2085  0.4806  0.9911  0.5167  0.004018 0.5206 : : : : : :
667. 1 0.1036  1.735 -109.1 658. 1 0.002758 4316
1.119  0.1834  0.4851  0.9897  0.5217  0.004482 0.5262 778 1 0. 09596 1 737 -128.9 2674 0. 002143  £431
1.12 0.1521  0.4903  0.988 0.5274  0.005223 0.5328 889, 1 0. 0898 1739 -148 8 876. 6 0. 001727 6628
1.121  0.1093  0.497 0.9854  0.5345  0.006687 0.5411 1000 0 08460 174  _les s o8e. 8 0.001431 7902
1.122 3500311 0.5126  0.9779  0.5503  0.01557  0.5607 1111 0.08036 1 742 -188 8 1095 0. 00121 9248
244, a =-4 ﬁo =0.9 ,BrO =0.4 a =-3.6 a=-7.2 3.1.1. a,lO =-10 ,Bto =0.3 ﬁro - a =-3 a=-6
0.002108 0 1 0 0 0 1 0.005773 0 1 0 0 0
1.011  0.1479  0.1483 1 0.1494  0.1463 0.1494 1.233 0.5841  0.6227 1.002 0.7193  0.6197 0.7204
1.022  0.2074  0.2088 1 0.2119  0.0605 0.2119 1. 467 0.7161  0.8197 1.001 1.072 0.1971 1.075
1.033  0.2519  0.2546 1 0.2603  0.04579  0.2603 17 0. 76 09459  0.9945 1 379 0. 1262 1 389
1.044  0.2886  0.2927 1 0.3014  0.03809  0.3014 1.933 0.7567  1.039  0.9802  1.666 0.09323  1.695
1.056  0.3201  0.3258 1 0.3379  0.03311  0.3379
2.167 0.7227  1.114  0.9554  1.945 0.07503  2.01
1.067  0.3475  0.3554 1 0.3711  0.02956  0.3711 54 06652 1179  0.9174 2 218 0. 06ada 2 346
1.078  0.3711  0.3823 1 0. 402 0.02689  0.402 2. 633 0.5868  1.237  0.8619  2.488 0.05877  2.718
1.089  0.3897  0.4071  0.9999  0.4312  0.02486  0.4312 > 86y 0 2845 1 995 0 7811 o 758 0 05748 3 153
1.1 0.4008  0.4306  0.9996  0.4591  0.02343  0.4593 : : : : : :
3.1 0.3447  1.358  0.6552  3.03 0.06298  3.715
1.111 0.4 0.4532  0.999 0.4865  0.02263  0.4869 3 333 0 1184 0 2894 3 301 0. 126 = 018
1.115  0.3959  0.4604  0.9987  0.4953  0.007421 0. 4962 : o _ : _ " e -
1.118  0.3893  0.4679  0.9982 0.5044  0.007473  0.5055 3.12. oo =-10 fBo=0.3 [o=0.1 & =-3 a=-6
1.122 0.3796 0. 4755 0.9976 0.5136 0.007581  0.515 1 0. 005773 0 1 0 0 0
1.126  0.3662  0.4832  0.9968  0.5231  0.007763 0.5248 1.233 0.5841 0.6227  1.002  0.7193  0.6197 0. 7204
1.129  0.3482  0.4913  0.9958  0.5328  0.00805  0.5351 1. 467 0.7162 0.8197  1.001  1.072 0.197 1.075
1.133 0. 3243 0. 4998 0. 9945 0. 543 0.008495  0.5459 1.7 0. 7605 0. 9458 0.9947  1.379 0.1261 1.389
1.137 0.2922 0. 509 0. 9926 0. 5539 0.009203 0.5578 1.933 0. 7579 1.039 0.9805 1.666 0. 09313 1.695
1.14 0.2482  0.5194  0.99 0.5661  0.01042  0.5713 2.167 0.7247 1.114 0.956  1.944 0.07488  2.009
1.144  0.1824  0.5324  0.9857  0.5807  0.01297  0.5882 2.4 0. 6684 1.178 0.9186  2.217 0.06421  2.343
1.148  0.0005284 0.5622  0.971 0.6118  0.02986  0.6275 2.633 0. 5915 1.236 0.8642  2.487 0.05841  2.713
o _ - _ _ _ 2. 867 0. 4917 1.293 0.7854  2.757 0.05685  3.143
5'4'5' “10 ‘0(')?333 Bo 0‘0' 9 lﬂro =0. 4%59 a "03' 6 «a s 7.2 3.1 0. 3569 1.355 0.6643  3.028 0.06156  3.693
bon URE s 1 e cum o tm gl & ks s dwm o
1.022  0.2074  0.2086 1 0.2117 0. 0605 0.2117
3. 337 0.08944  1.456 0.3831 3.315 0.001927  4.755
1.033  0.252 0. 2544 1 0. 2601 0.04579  0.2601
3.339 0.08367  1.458 0.3765 3.318 0.002049  4.778
1.044  0.2886  0.2925 1 0.3011 0.03808  0.3011 3.341 0.07746  1.46 0.3694 3.321 0.002199 4. 802
1.056  0.3202  0.3256 1 0.3376 0.03311  0.3376 3.343 0.07071  1.462 0.3617 3.324 0.002388  4.829
1.067  0.348 0. 3551 1 0. 3709 0.02954  0.3709
3. 345 0.06325  1.465 0.3532  3.326 0.002638 4. 858
1.078  0.373 0. 3819 1 0. 4017 0.02681  0.4017
3. 347 0.05478  1.468 0.3434 3.33 0.002991 4. 892
1.089  0.3957  0.4066 1 0. 4306 0.02463  0.4306 3. 349 0.04473  1.472 0.3318 3.333 0.003544  4.931
1.1 0.4166  0.4294 1 0.458 0.02284  0.458 3.351 0.03163  1.476 0.3166  3.336 0.004613  4.983
1.111  0.4359  0.4507 1 0.484 0.02133  0.484 3.353 0.0004061 1. 487 0.2794  3.341 0.01119  5.109
2.111  0.8688  1.079  0.9973  1.861 0. 6278 1. 864 e _ - -
3.111  0.8999  1.25 0.9816  2.952 0.171 2.985 3.13. oo =-10 fBr=0.3 f[o=0.3 & =-3 a-=-
4.111  0.8812  1.337  0.9511 4 0.08754  4.106 1 0. 005773 0 1 0 0 0
5.111  0.8509  1.392  0.9079  5.03 0.05487 5 26 1.233 0. 5842 0.6227  1.002 0.7193  0.6197 0. 7204
6.111  0.8187 1. 431 0. 8544 6.051 0. 03831 6. 458 1. 467 0.7176 0. 8195 1. 001 1.072 0. 1969 1.074
7.111 0.7878  1.459 0.7923  7.067  0.02863 7.703 1.7 0. 7649 0.9452  0.9955  1.378  0.1257 1.387
8.111 0.7589 1.482 0.7228 8.079 0. 02241 8. 997 1.933 0.7671 1.038 0.9828 1. 665 0. 09233 1.691
9.111 0.7324 1.5 0. 6472 9. 088 0.01814 10. 34 2.167 0. 7406 1.111 0.9611 1. 942 0. 07366 1.999
10.11  0.708 1.515 0.5662 10.1 0.01507  11.73 2.4 0. 6932 1.174 0.9284  2.213  0.06241 2.324
11.11 0. 6857 1.528 0.4805 11.1 0.01277 13.16 2.633 0.6284 1. 229 0. 8819 2.481 0. 05571 2. 677
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Prolongation of app. 4 Prolongation of app. 4

R/ r p x/ y/ Ap te, /
2.867 & 0. 5462 1. 282 0. 817 23)748 0. 05247 Rps. 074 5%/59) 0. 2’?'58 1 gz )é/_lz*’694 35/)/_%’03 3%2776 tcl7/'|:i‘)89
3.1 0. 4424 1.335 0.7251  3.014  0.05293 3.546 5.557  0.2072 1.553  0.09735 5.556  0.03323  8.472
3.333 0.3 1.395 0.5822  3.282  0.06052 4.174 5.804  0.0008282 1.627 -0.3233 5.795  0.07325  10.86
3.335 0. 2985 1.396 0.5814  3.284  0.0005924 4.181 o
3.337 0. 297 1.396 0.5798  3.287  0.0005947  4.187 3.16 =-10 [Bo =0.3 [ =0.8709 & =-3 a=-6
3.339 0. 2955 1. 397 0.5781 3.289 0. 000597 4.194 1 0. 005773 0 1 0 0 0
3.341 0. 2939 1.397 0.5765  3.291  0.0005994  4.201 1.233  0.5851 0.6226  1.002 0.7192 0.6196  0.7203
3.343 0. 2924 1.398 0.5749  3.293  0.0006018 4.207 1.467  0.729 0.8181  1.003 1.07 0.1956  1.072
3.345 0. 2909 1. 399 0.5732 3.296 0.0006042  4.214 1.7 0. 8008 0. 9403 1. 002 1.373 0.1221 1. 376
3. 347 0. 2893 1. 399 0.5716 3.298 0.0006067 4.221 1.933 0. 8401 1. 027 1. 001 1. 654 0.08643  1.659
3.349 0.2878 1.4 0. 5699 3.3 0. 0006093  4.228 2.167 0. 8619 1. 092 0.998 1.923 0. 0654 1.933
3.351 0. 2862 1.4 0.5682  3.303  0.0006119 4. 235 2.4 0.8732 1.144 0.994 2.185  0.05169  2.202
3.353 0. 2846 1. 401 0. 5665 3.305 0.0006145  4.241 3-22§ 8-2;;? i-%g? g-gggi g-ggé g-gggig §-§g§
0 _ — — — — . . . . . .
13'1'4' 0“%)05‘7'7310 %0 =0.3 L Bo =0. E(’) a ‘(;3 a "06 3.1 0. 8755 1.251 0.9744  2.943  0.02994 3
1.233  0.5844 0.6226  1.002 0.7193  0.6196 0. 7204 2:222 8:?282 i:i;; 8 3?22 2:226 8:25885 g:gg;
1.467  0.7203 0.8192  1.001 1.072  0.1966 1. 074 o 333 0 6817 1 c1s 0 1966 9 32 0. 0697 11 07
1.7 0.7737 0.944 0.9972 1.377  0.1248 1.384 12.33 0. 6161 1.558 0.1619 12.33 0. 0401 15. 71
1.933  0.7852 1.035 0. 9874 1.662  0.09081  1.683 15 33 0. 26e8 L esa  -0.21 15 33 0. 02682  20.8
2.167  0.7713 1.106 0.9708 1.937  0.07139  1.982 18. 33 0. 5258 1.604  -0.6092 18.32 0.01954  26.31
2.4 0.7403 1.165 0. 9465 2.205  0.05924  2.29 21.33 0. 4931 1.619  -1.03 21.31 0.01505  32.2
2.633  0.6963 1.217 0.913 2.47 0.0513 2.615 24.33 0. 4658 1.631  -1.467  24.29 0.01205  38.47
2.867  0.6415 1.263 0. 8689 2.732  0.04612  2.963 27.33 0. 4426 1.641  -1.919  27.27 0.009929  45.08
3.1 0.5765 1.306 0.8117 2.992  0.04303  3.346 30.33 0. 4225 1.649  -2.383  30.24 0.008365 52.02
3.333 0.5 1.348 0.7374 3.251  0.04187  3.78 33.33 0. 4048 1.657  -2.857  33.21 0.007172  59.28
3.404  0.4743 1.361 0. 7098 3.329  0.0127 3.924 336 3 0. 1329 1756  -61.83 3306 0. 099 1702
3.474 0.447 1.374 0. 6806 3.406  0.01289  4.076 669. 3 0.09446  1.769 -131.6 656. 3 0. 01301 4746
3.544  0.4179 1.387 0. 6485 3.484  0.01318  4.239 1002 0.07705 1774 -207.7 981 & 0. 005781 8677
3.614  0.3866 1.4 0.6129 3.562  0.01362  4.413 1335 0.06695  1.778 -274.6 1307 0.003451 13330
3.684  0.3526 1. 415 0.573 3.639  0.01426  4.603 lees 0.05991 178  -346. 9 1632 0. 002355 18600
3.754  0.3151 1.43 0. 5275 3.717  0.01519  4.813 2001 0 02471 1782 -a19. 6 ppgies 0. 00174 24420
3.825  0.2726 1. 446 0.4743 3.795  0.01663  5.052 2334 0.05066  1.783 -492.5 2282 0.001353 30760
3.895  0.2223 1. 466 0. 4093 3.873  0.01903  5.336 667 0. 0474 1784 oo 6 5607 0.001091 37560
3.965  0.1569 1. 489 0. 3222 3.952  0.02395  5.706 3000 0. 0447 1 785 6389 5932 0. 0009036 44800
4.035 0.9903049 1.545 0.1032 4.034  0.05578  6.601 3333 0 04241 1786 -712 3 3756 0. 0007645 52450
3.15 o =-10 ,8(0 =0.3 ﬂrO =0.7 a =-3 a=-6 3.2.1. 0’10 =-10 AO =0.5 /Bro :0 a =-5 =-10
1 0. 005773 0 1 0 0 0 1 0. 004472 0 1 0 0
1.233  0.5847 0.6226  1.002 0.7192  0.6196 0. 7203
1.467  0.7244 0.8187  1.002 1.071 0. 1961 1.073 i:; 8:;;2? 8:;522 i:ggi 8 gg?g 8:1523 8:22;2
1.7 0. 7866 0.9422  0.9996  1.375 0.1235 1.38 1.3 0. 6379 0.6918  1.001  0.8293  0.1075 0. 8297
1.933  0.8116 1.031 0.9939  1.658 0.08866  1.671 1.4 0. 6935 0.7742  1.001  0.9788  0.08241  0.9796
2.167  0.8153 1. 099 0.9843  1.93 0.06837  1.958 - 0. 7239 0.8412  0.9998 1 118 0. 06704 1 12
2.4 0. 8057 1.155 0.9705  2.195 0.05529  2.245 1.6 0.7273 0.8985  0.9965 1.252 0.05723  1.258
2.633  0.7872 1.201 0.9522  2.455 0.0463 2.538 1.7 0. 6976 0.9498  0.9891 1.383 0.05136  1.397
2.867  0.7624 1.241 0.9293  2.712 0.03986  2.839 18 0. 6230 0. 999 0 9741 1 514 0. 04914 1 548
3.1 0.733 1.276 0.9014  2.966 0.03509  3.151 1.9 0. 4779 1.051 0.943  1.649 0.05249  1.728
3.333 0.7 1. 307 0.8684  3.218 0.03149  3.477 5 0 1 193 0. 8108 1 828 0 1019 5 191
3.58 0. 6619 1.337 0.8282  3.483 0.03037  3.84 0
3.827  0.6209 1. 365 0.7804  3.747 0.02809  4.225 3.2.2. =-10 [Bo =0.5 Bo =0. o =-5 a=-10
4.074  0.5771 1.392 0.7251  4.009 0.02643 4. 637 1 0. 004472 0 1 0 0 0
4.321 0. 5304 1.417 0.6611 4.271 0. 02532 5.083 1.1 0. 4166 0. 4283 1.001 0. 4568 0. 4253 0. 4572
4. 568 0. 4803 1. 442 0. 587 4.531 0. 02474 5.572 1.2 0. 5527 0. 5842 1.001 0. 6619 0. 156 0. 6623
4.815 0. 426 1. 467 0. 5003 4.789 0. 02476 6.118 1.3 0. 6379 0. 6918 1.001 0. 8293 0. 1075 0. 8297
5.062  0.3656 1. 492 0.3971  5.047 0.02558  6.742 1.4 0. 6935 0.7742 1.001  0.9788  0.0824 0.9796
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Prolongation of app. 4 Prolongation of app. 4

RIR, B ¢ XIR, yIR, Ag te; IR, RIR, B ¢ XIR, yIR, Ag te; IR,
1.5 0. 7242 0. 8412 0.9999 1.118 0.06702  1.12 2.063 0.3672 1.117 0.9044  1.854 0.007764  1.999
1.6 0.728 0. 8984 0.9966  1.252 0.05719  1.257 2.076  0.3308 1.125 0.8942  1.873 0.008421  2.035
1.7 0. 6992 0. 9497 0.9893 1.382 0.05128  1.397 2.088  0.2886 1.135 0.8819  1.893 0.009375  2.075
1.8 0. 6268 0. 9986 0.9746  1.513 0.04897  1.547 2.101  0.2373 1.146 0.8664  1.914 0.01091  2.123
1.9 0. 4848 1. 051 0. 9443 1.649  0.05204  1.725 2.113  0.169 1.16 0.8446  1.937 0.01394  2.185

2 0.1 1.137 0. 8406 1.815  0.0862 2. 057 2.126  0.0005514 1.193 0.7849  1.976 0.033 2.334

2 0.09489  1.138 0. 839 1.816  0.000982  2.061 0. — - - —

2.001 0.08949  1.139 0. 8373 1.817  0.001038  2.065 13'2'5' 00'%)0447210 0'8‘0 0.5 1 Bo =0. 70 a 05 a 010

2.001  0.08373  1.14 0.8354 1.818  0.001104  2.07 1.1 0. 4166 0.4283  1.001 0.4568  0.4253 0. 4572

2.002 0.07754  1.141 0. 8334 1.82 0.001185 2.074

1.2 0. 5528 0.5842  1.001 0.6619  0.156 0. 6623

2.002  0.0708 1.143 0. 8313 1.821  0.001288  2.079 13 0. 6386 0 8017 1 001 0.8292 0 1075 0. 8297

2.002 0.06335  1.144 0. 8288 1.823  0.001424 2.085 12 0. 6976 07739 1 001 0. 9785 0 08216 0 979

2.003  0.05487  1.146 0. 826 1.824  0.001615  2.092 : : : : : : :

1.5 0.738 0.8402  1.001 1.117 0.06627  1.118

2.003 0.04482  1.148 0. 8227 1.826  0.001915 2.099

1.6 0.7626 0. 8956 1 1. 249 0.05546  1.251

2.003  0.0317 1.15 0. 8183 1.829  0.002493  2.109

5 004 0 0006991 1. 156 0 807z 1834 0 005996 2 133 1.7 0.772 0.9435  0.9979  1.376 0.04784  1.381
: -8 : : ' ' 1.8 0. 7658 0.9859  0.9938  1.501 0.04242  1.511
323. o =-10 Lo =0.5 Lo =0.3 a =-5 a=-10 1.9 0. 7427 1. 025 0.987 1.624 0. 03868 1. 643

1 0. 004472 0 1 0 0 0 2 0.7 1. 061 0.9761  1.746 0.03639  1.782

1.1 0. 4166 0.4283  1.001 0.4568  0.4253 0. 4572 2.038 0.6776 1.075 0.9703  1.793 0.01368  1.838

1.2 0. 5527 0.5842  1.001 0.6619  0.156 0. 6623 2.077  0.6513 1.088 0.9636  1.84 0.01366  1.896

1.3 0. 638 0.6918  1.001 0.8293  0.1075 0. 8297 2.115  0.6207 1.102 0.9556  1.887 0.01375  1.956

1.4 0. 6942 0.7741  1.001 0.9787  0.08236  0.9795 2.154  0.585 1.116 0. 946 1.935 0.01399  2.02

1.5 0. 7265 0.841 1 1.118 0.06689  1.12 2.192  0.5433 1.13 0.9343  1.983 0.01442  2.088

1.6 0. 7339 0.8979  0.9972  1.251 0.05689  1.256 2.231  0.494 1.146 0.9201  2.032 0.01514  2.162

1.7 0.7119 0.9486  0.9908  1.381 0.05066  1.394 2.269  0.4347 1.162 0. 902 2.082 0.01634  2.245

1.8 0. 652 0.9962  0.9783  1.511 0.04765  1.54 2.308  0.3604 1.18 0.8781  2.134 0.01844  2.341

1.9 0. 5364 1.045 0.9536  1.643 0.04879  1.707 2.346  0.2586 1.203 0.8429  2.189 0.02288  2.465
2 0.3 1.107 0.8952  1.788 0.06172  1.943 2.384 0.000399 1.256 0.7389  2.267 0.05242  2.76

2.004  0.2853 1.11 0.8907  1.795 0.003185 1.956 0 _._ - - —. —

2.007 0.2697 1.114 0.8863  1.801 0.003347  1.969 3'12'6' 010 004%192 '8‘00 0.5 ,B’lro 0. 86%2 a 0 5 «a 010

2.011  0.2529 1.117 0.8815  1.808 0.003541 1.984 11 0. 2166 0. 4283 1 001 0.4568 0. 4253 0. 4572

2.015 0. 2347 1.121 0.8763  1.814 0.003781  1.999 15 0. 5528 0. 5842 1 001 0 6019 0 150 0. 6623

2.019  0.2147 1.125 0.8705  1.821 0.004087  2.015 : : : : : :

1.3 0. 639 0. 6917 1. 001 0.8292  0.1075 0. 8296

2.022  0.1925 1.129 0.8639  1.829 0.004493  2.034

1.4 0. 6998 0.7737 1. 001 0.9783  0.08203 0.9788

2.026 0.1671 1.135 0.8562  1.836 0.005068 2. 055 1= 0. 7453 0. 8396 1 002 1117 0 06588 1117

2.03  0.1368 1.14 0.8468  1.845 0.005975  2.079 e 0. 7804 0. 8942 1 009 1248 0 05461 1 248

2.034 0.09696  1.148 0.834 1. 855 0.007739  2.111 : : : : : : :

S 037 0 0006129 1 167 0 8008 1893 0 01863 5 188 1.7 0. 8083 0. 9405 1. 002 1.373  0.04627 1.374
: -9 : : ' : : 1.8 0. 8307 0. 9804 1. 002 1.495  0.03987 1. 496
3.24. o =-10 [ =0.5 Lo =0.5 a =-5 a=-10 1.9 0.8491 1.015 1.002 1.614 0. 03481 1.615
1 0. 004472 0 1 0 0 0 2 0. 8642 1. 046 1. 002 1.731  0.03072 1.732

1.1 0. 4166 0.4283  1.001 0.4568  0.4253 0. 4572 3.8 0. 9303 1. 307 0.9926  3.668  0.2605 3. 697

1.2 0. 5527 0.5842  1.001 0.6619  0.156 0. 6623 5.6 0. 8974 1.399 0.9594  5.517  0.09212 5. 662

1.3 0. 6382 0.6918  1.001 0.8293  0.1075 0. 8297 7.4 0. 8521 1. 448 0.9051  7.344  0.04954 7.72

1.4 0. 6956 0.774 1. 001 0.9786  0.08228  0.9793 9.2 0. 8082 1.48 0.8344  9.162  0.03181 9. 89

1.5 0.7311 0. 8407 1 1.118 0.06664  1.119 11 0. 7684 1.503 0.7504  10.97 0.02255  12.17

1.6 0. 7455 0. 897 0.9984  1.25 0.05631  1.254 12.8 0. 7329 1.52 0.6557 12.78 0.01702  14.57

1.7 0. 7365 0.9465  0.9938  1.379 0.04947  1.389 14. 6 0. 7014 1.533 0.5521  14.59 0.01343  17.09

1.8 0. 6998 0.9918  0.985 1. 507 0.04533  1.528 16. 4 0. 6734 1. 544 0.4409  16.39 0.01093  19.71

1.9 0. 6271 1.036 0. 969 1. 634 0.04384  1.678 18.2 0. 6482 1.553 0.3233 18.2 0.009124  22.43
2 0.5 1. 082 0.9392  1.766 0.04632  1.854 20 0. 6256 1.561 0.2001 20 0.007763  25.26

2.013  0.478 1. 088 0.9337  1.783 0.006395 1.88 201.8 0.2198 1.664  -18.7 200. 9 0.103 626. 6

2.025 0.4542 1. 095 0.9276 1.8 0.006625  1.907 401.6 0. 1568 1.677  -42.44  399.4 0. 01308 1728

2.038 0.4281 1.102 0.9208  1.818 0.006914  1.935 601. 4 0. 1284 1.682  -67.03  597.7 0. 0058 3148

2.05  0.3993 1.109 0.9132  1.836 0.007282  1.966 801. 2 0.1114 1.686  -92.05  795.9 0.003459 4826
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Prolongation of app. 4 Prolongation of app. 4

R/R, 5 @ X/R, y/R, JAY/) tc, /R, R/R, 5 @ X/R, y/R, JAY/) tc, /R,
1001 0. 0997 1.688 -117.4 994. 1 0. 002361 6727 1.431 0.2708 0. 8239 0.9721 1. 05 0.001987 1.077
1201 0. 09106 1. 69 -142.9 1192 0. 001743 8828 1. 432 0. 2545 0. 826 0. 9706 1. 053 0.002102 1.081
1401 0. 08434 1.691 -168.5 1390 0.001355 11110 1.433 0. 2367 0. 8282 0. 969 1. 056 0.002245 1.086
1600 0. 07892 1.692 -194.3 1589 0.001092 13560 1.434 0.217 0. 8307 0. 9672 1. 059 0.002426 1.091
1800 0. 07443 1.693 -220.1 1787 0. 0009045 16170 1.435 0.195 0. 8333 0. 9652 1. 062 0.002667 1.096
2000 0. 07062 1.694 -246.1 1985 0. 0007652 18930 1.436 0. 1697 0. 8363 0. 9627 1. 066 0.003009 1.103

331 a’ =-10 Bo =0.7 Bo =0 a =-7 a=-14 1.438 0. 1392 0. 8399 0. 9597 1.07 0.003547 1.11

1 0. 00378 0 1 0 0 0 1.439 0.09886  0.8445 0. 9555 1. 076 0.004594  1.119
1043 0 2838 0. 2869 1 0. 2951 0. 2839 0. 2952 1.44 0. 0007959 0. 8556 0. 9442 1. 087 0.01112 1.142
1.086 0. 3894 0.3993 1 0.4221 0.1123 0.4222 334, &’ =-10 By =0.7 Lo =0.5 a =-7 a=-14
1.129 0. 4635 0. 4812 1 0.5224 0. 08196 0.5225 1 0. 00378 0 1 0 0 0
1.171 0. 5208 0.5471 1 0. 6094 0. 06584 0. 6095 1. 043 0. 2838 0. 2869 1 0. 2951 0. 2839 0. 2952
1.214 0. 5667 0.6025 1.001 0. 6881 0. 05539 0. 6882 1. 086 0. 3894 0. 3993 1 0. 4221 0.1123 0. 4222
1. 257 0. 602 0. 6505 1 0.7613 0. 048 0.7614 1.129 0. 4635 0. 4812 1 0.5224 0. 08196 0.5225
1.3 0. 6213 0. 6932 1 0. 8307 0. 04276 0. 8313 1.171 0. 5208 0.5471 1 0. 6094 0. 06584 0. 6095
1.343 0. 6075 0.7329 0.9981 0.8984 0. 0397 0. 9006 1.214 0. 567 0. 6024 1. 001 0. 6881 0. 05537 0. 6882
1.386 0. 5157 0.7733 0.9917 0.9679 0. 04035 0. 9758 1. 257 0. 604 0. 6504 1. 001 0. 7612 0. 04792 0.7613
1.429 0 0.8458 0.9473 1.069 0. 07254 1.121 1.3 0.63 0. 6928 1 0. 8303 0. 04244 0. 8307

332 a’ =-10 bo =0.7 fo =0.1 @ =-7 a=-14 1.343 0. 6376 0.7314 0. 9994 0. 8969 0. 03861 0. 8981

L 000378 0 - 0 0 0 1425 08 08086 09385 1031 00345 1043
i ggg 8:2232 8 gggg i 8:2221 8:??22 8:2223 1.433 0. 4816 0.8111 0. 9867 1. 039 0.004101 1.051
1 129 0 2635 0 2812 1 0 5224 0 08196 0 5225 1. 437 0. 4611 0. 8153 0. 9851 1. 046 0.004246 1.06
1.171  0.5208  0.5471 1 0.6094  0.06584  0.6095 1.441  0.4379 0.8198  0.9833  1.053  0.004427  1.069
1 214 0 5667 0. 6025 1 001 0 6881 0. 05539 0 6882 1. 445 0. 4116 0. 8244 0.9812 1. 061 0. 004657 1. 079
1 257 0 6021 0 6504 1 0 7613 0. 04799 0 7614 1. 449 0. 3815 0. 8294 0. 9787 1. 069 0. 00496 1. 089
13 0 6217 0 6932 1 0 8307 0 04275 0 8313 1. 453 0. 3465 0. 8348 0. 9757 1. 077 0. 005372 1.101
1.343  0.6087  0.7328  0.9981 0.8984  0.03965  0.9005 1.457 0.3046 0.8407  0.972 1.086  0.005972  1.113
1 386 0 5197 0 773 0 9919 0 9677 0. 04018 0 9754 1. 462 0. 2525 0. 8477 0.9671 1. 096 0. 006938 1.128
1 429 01 0. 8369 0 9568 1 061 0. 06386 1103 1. 466 0.1812 0. 8565 0. 9601 1.107 0. 008855 1.147
1.429  0.09491 0.8376  0.9562 1. 062 0.0005703 1.104 1.47 00007395 0.8775 ~ 0.9393  1.13 0.02098 1.192
1.429 0.08953 0.8382 0. 9556 1. 062 0. 0006025 1.105 335 o =-10 Lo =0.7 Bo =0.7 o =-7 a=-14
1.429 0.08379  0.8388 0. 955 1. 063 0.0006411 1.107 1 0. 00378 0 1 0 0 0
1.429 0.07761 0. 8395 0. 9544 1. 064 0.0006883 1.108 1.043 0.2838 0. 2869 1 0.2951 0.2839 0. 2952
1. 429 0.07088 0. 8403 0. 9536 1. 064 0. 000748 1.11 1. 086 0. 3894 0. 3993 1 0. 4221 0.1123 0. 4222
1.429 0. 06343 0.8411 0. 9528 1. 065 0.0008269 1.111 1.129 0. 4635 0. 4812 1 0.5224 0. 08196 0. 5225
1. 429 0. 05496 0. 842 0. 9519 1. 066 0. 0009379 1.113 1.171 0.5208 0.5471 1 0. 6094 0. 06584 0. 6095
1. 429 0. 0449 0.8431 0. 9508 1. 067 0.001112 1.116 1.214 0.5673 0. 6024 1.001 0. 6881 0. 05536 0. 6882
1.43 0.03177 0. 8446 0. 9493 1. 069 0.001448 1.118 1. 257 0. 6059 0. 6503 1. 001 0.7611 0. 04785 0. 7612
1.43 0. 001076 0.8482 0. 9455 1.072 0. 003596 1.126 1.3 0. 6383 0. 6924 1. 001 0. 8299 0. 04214 0.83

3.33. o’ =-10 Lo =0.7 Bo =0.3 a =-7 a=-14 1.343 0. 6652 0.7301 1. 001 0. 8956 0. 03766 0. 8958

1 0. 00378 0 1 0 0 0 1.386 0. 6862 0. 7642 1 0. 9588 0. 03407 0. 9592
1.043  0.2838  0.2869 1 0.2951  0.2839 0. 2952 1.429 0.7 0. 7954 1 1.02 0.03121  1.021
1. 086 0. 3894 0. 3993 1 0. 4221 0. 1123 0. 4222 1. 455 0. 7039 0. 8132 0.9999 1.057 0.01818 1. 059
1 129 0. 4635 0. 4812 1 0. 5224 0. 08196 0. 5225 1. 482 0. 7032 0. 8307 0.9992 1.094 0.01749 1. 096
1171 0. 5208 0. 5471 1 0. 6094 0. 06584 0. 6095 1.508 0. 6967 0. 8476 0.9981 1.131 0. 01696 1.134
1.214  0.5668  0.6025  1.001 0.6881  0.05538 0. 6882 1.535  0.6828 0.8642  0.9964 1.167 0.01661  1.173
1. 257 0. 6027 0. 6504 1 0. 7612 0. 04797 0. 7614 1.561 0. 6595 0. 8807 0.9939 1.204 0.01648 1.212
13 0. 6245 0. 6931 1 0. 8306 0. 04264 0. 8311 1.588 0. 6238 0. 8974 0.9903 1.241 0. 01665 1. 254
1. 429 0.3 0. 8201 0. 9745 1. 045 0. 04879 1. 069 1. 667 0. 367 0. 9559 0.9619 1.362 0. 02244 1. 409
143 0. 2859 0. 8219 0. 9734 1047 0. 001891 1.073 1.694 0. 000562  1.005 0.9079 1.43 0. 04928 1.549
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Prolongation of app. 4 Prolongation of app. 4

R/ x/ / A tc, / RIR A ¢ xRy YR Ap /Ry
R 0 _/2 ¢_ Ry _ YR __¢ t R 1.089  0.3935 0. 4068 1 0. 4309 0.02468 0. 4309
336. o =-10 [ =0.7 [ =0.714 @& =-7 a=-14 1.1 0. 3896 0.4303 0.9997 0. 4588 0.02342  0.459
1 0. 005345 0 1 0 0 0 1,111 0.1 0.4614 0.9949  0.4947 0.03114  0.4971
1.043  0.2838 0.2874 1 0.2956  0.2824 0.2957 1.111  0.095 0.4613 0.995  0.4946 0.0002673 0. 4973
1. 086 0. 3895 0. 3997 1 0. 4225 0.1123 0. 4227 1.111 0. 08969 0.4615 0.9949  0.4948 0.0002822 0. 4977
1.129 0. 4636 0.4817 1 0.5228 0. 08196 0.523 1.111 0. 08401 0.4618 0.9948  0.4952 0. 0003001 0. 498
1.171  0.5208 0.5475 1 0.6098  0.06584  0.6099 1.111  0.07788 0.4622 0.9947  0.4955 0.0003219 0. 4984
1.214  0.5673 0. 6029 1 0.6885  0.05536  0.6887 1.111  0.0712 0.4625 0.9945  0.4959 0.0003496 0. 4989
1.257 0. 606 0. 6507 1 0.7615 0. 04785 0.7617 1.111 0. 06377 0.4629 0.9943  0.4963 0.0003861 0.4994
1.3 0.639 0.6928 1 0. 8303 0. 04212 0. 8305 1.111 0. 0553 0.4633 0.9942 0. 4967 0.0004376 0.4999
1.343  0.6674 0. 7304 1 0.8959  0.03758  0.8961 1.111 0. 04522 0.4639 0.9939 0.4972 0.0005183 0. 5005
1.386  0.6922 0. 7643 1 0. 959 0.03388  0.9591 1.111  0.03203 0.4645 0.9936  0.4979 0.0006744 0.5014
1.429 0.714 0.7951 1 1.02 0. 03079 1.02 1.111 0.001027 0.4662 0.9928  0.4996 0.001687 0.5035
2.714  0.9276 1.193 1. 001 2.523 0. 3982 2.524 o _ _ _ _ _
4 0. 9542 1.319 0.9978  3.874 0. 1255 3. 884 13'4'3' oaéo3g3:310 ,go =0.9 L Fro ‘0'03 o "09 a "018
5.286  0.947 1.383 0.9892  5.192 0.06384  5.234 :
6.571  0.9279 1. 422 0.9744  6.499 0.03943  6.605 1.011  0.1479 0.1481 1 0.1492 0.1451 0.1492
1.022  0.2074 0. 2086 1 0.2117 0. 0605 0.2117
7.857  0.9044 1. 449 0.9537  7.799 0.02716  8.008
9.143  0.8796 1. 469 0.9275  9.096 0.02005  9.449 1.033  0.252 0.2544 1 0.2601 0.04579  0.2601
10. 43 0. 8551 1. 485 0.8966  10. 39 0.01554  10.93 1.044  0.2886 0.2925 1 0.3011 0.03808  0.3011
11.71 0. 8315 1. 497 0.8615 11.68 0.01248  12.46 1.056  0.3202 0. 3256 1 0.3376 0.03311  0.3376
1.067  0.348 0. 3551 1 0. 3709 0.02954  0.3709
13 0. 809 1.507 0.8226  12.97 0.01029  14.02
1.078  0.3729 0.3819 1 0. 4017 0.02681  0.4017
14. 29 0.7878 1.516 0.7803  14.26 0.008669  15. 64
Yt 0. 3042 1 e .7 784 143 6 0. 109 330 1 1.089  0.3945 0. 4066 1 0. 4306 0.02466  0.4306
286. 9 0.2182 1.638 -19.21  286.2 0.0132  896.8 1.1 0.4018 0.4297 1 0.4583 0.02315  0.4584
) 1.111 0.3 0.4543 0.9984 0.4876 0.02458 0. 4884
429. 6 0.1791 1.644 -31.27  428.4 0.005829 1625
1.112  0.2889 0.4551 0.9984 0.4885 0.001076 0. 4893
572.3 0. 1554 1.647 -43.63  570.6 0.003471 2484
21e 0 1395 1649 -c6 2 212 8 0 002367 3456 1.112  0.2765 0.4562 0.9982  0.4898 0.001119 0. 4907
857 7 0. 1272 1ee1  _es o1 854 9 0. 001747 4530 1.112  0.2626 0.4574 0.998  0.4912 0.001173 0. 4922
: : : e : : 1.113  0.2468 0.4586 0.9977  0.4926 0.001241 0. 4937
1000 0.1179 1. 653 81.73 997.1 0. 001357 5697
) 1.113  0.2288 0.4599  0.9974  0.4941 0.001328 0. 4953
1143 0.1103 1. 654 94. 64 1139 0. 001094 6949
1286 0 1041 L ese  -107 6 1281 0. 0009058 8282 1.113  0.2078 0.4614 0.997  0.4957  0.001445  0.4971
1429 0.09875 1 ese  -120.6 1423 0. 0007662 9601 1.114  0.1828 0.463  0.9966 0.4975  0.001614 0. 4991
ROt : B : a o B 1.114  0.1516 0.4649 0.996  0.4995  0.001883  0.5015
341, o =-10 (o =0.9 f[o=0 & =-9 a=-18 1.115  0.1089 0.4673 0.9951 0.5021  0.002414  0.5045
1 0. 002108 0 1 0 0 0 1.115  0.001178  0.4731 0.9925 0.5081  0.005815  0.5117
1.011  0.1479 0. 1483 1 0. 1494 0. 1463 0. 1494 o _ _ _ _ _
1.022  0.2074 0.2088 1 0.2119 0. 0605 0.2119 13'4'4' gloo;e:e,le,o 'go =0.9 L Pro ‘0"3 o "09 a ‘;)18
1.033  0.2519 0. 2546 1 0. 2603 0.04579  0.2603 ~
1.044  0.2886 0. 2927 1 0. 3014 0.03808  0.3014 1.011  0.1479 0.1481 1 0.1492  0.1451 0.1492
1.056  0.3201 0. 3258 1 0. 3379 0.03311  0.3379 1.022 0.2074 0.2086 1 0.2117  0.0605 0.2117
1.033  0.252 0. 2544 1 0.2601  0.04579  0.2601
1.067  0.348 0. 3554 1 0.3711 0.02954  0.3711
1.044  0.2886 0. 2925 1 0.3011  0.03808  0.3011
1.078  0.3729 0. 3822 1 0. 4019 0.02681  0.4019
1.089  0.3933 0. 4068 1 0. 4309 0.02468  0.4309 1.056  0.3202 0. 3256 1 0.3376 ~ 0.03311  0.3376
1.1 0. 3881 0.4303 0.9997  0.4589 0.02346  0.459 1.067  0.348 0.3551 1 0.3709 ~ 0.02954  0.3709
1.078  0.373 0.3819 1 0.4017  0.02681  0.4017
1.111 0 0.4643 0.9935  0.4976 0.03403  0.5007
o _ B C B = 1.089  0.3954 0. 4066 1 0.4306  0.02464  0.4306
342. o =-10 B =0.9 [o=0.1 & =-9 a=-18 1.1 0. 4122 0. 4295 1 0.4581  0.02293  0.4581
1 0. 002108 0 1 0 0 0 1.111 0.4 0.4516 0.9997  0.4849  0.02211 0. 4851
1.011 0. 1479 0.1483 1 0.1494 0. 1463 0.1494 1.112 0. 3935 0.4544  0.9994 0. 4882 0.002411 0. 488
1. 022 0. 2074 0. 2088 1 0.2119 0. 0605 0.2119 1.113 0. 385 0.4569  0.9993 0. 4912 0.002452  0.491
1.033  0.2519 0. 2546 1 0. 2603 0.04579  0.2603 1.115  0.3741 0.4594 0.9991  0.4942  0.002509 0.4941
1.044  0.2886 0.2927 1 0. 3014 0.03808  0.3014 1.116  0.36 0.462  0.9989  0.4973  0.002589 0.4974
1. 056 0. 3201 0. 3258 1 0. 3379 0.03311 0. 3379 1.117 0. 3418 0.4647  0.9986 0. 5006 0.002701 0. 5007
1. 067 0. 348 0. 3554 1 0.3711 0. 02954 0.3711 1.118 0. 3183 0.4675 0.9982 0.504 0.002865 0.5043
1.078  0.3729 0.3822 1 0. 4019 0.02681  0.4019 1.119  0.2872 0.4706 0.9977  0.5076  0.003116 0.5082
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R/R,

1.1
1.1
1.1

3

CoNorNRRRRRRRERRERER

o~NoOOUBhWNE
O~NOURWNRELRE

1000
1111

300

RPRRRRRPRPRRR
=

21
22
23

4.5.

. 011

022
033
044
056
067
078
089

111

RRRRRRRRR
RRRRRRRERR
RPRRRRRRP

0
0
0

a

0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0

B
2445
1803
00122
°=-10
. 003333
. 1479
. 2074
. 252
. 2886
. 3202
. 348
. 373
. 3957
. 4166
4359
. 8807
. 9469
.97
. 9807
. 9865
. 9901
. 9924
. 994
. 9951
. 9959

RPRRPRRPRRPRRRERER

PRRPRPRRERPRPPRPPRPPRPPRPRPRPRRPRPPRPRPPOOOO00O00O0O0O0

X/R, y/R,
. 9969 0. 5117
. 9957 0.5166
. 9914 0. 5274
Bo =0. 4359
1 0
1 0. 1492
1 0. 2117
1 0. 2601
1 0. 3011
1 0. 3376
1 0. 3709
1 0. 4017
1 0. 4306
1 0. 458
1 0. 484
1 1.859
1 2. 946
1 3.988
1 5.012
1 6. 029
1 7.04
1 8. 049
1 9. 056
1 10. 06
1 11. 07
003 112.1
006 223. 1
009 334.1
012 445.1
014 556.1
017 667. 1
02 778. 1
023 889.1
. 026 1000
. 029 1111

R

©OO0O000000000000000000000000000

Ag

0. 003538
0. 004409
0.0103

=-9
0

. 1451

0605
04579
03808
03311
02954
02681
02463
02284
02133
6263
1662
08153
04879
03255
02328
01749
01362
01091
008941
081
004438

. 001489

0007464

. 0004484
. 0002992
. 0002138
. 0001604
. 0001248
.989e-005 1111

The ending enc. 4

tc, /R,

0.5
0.5
0.5

a=-

CPINPTWNPOOOOOO0O0000O

10.

11.
112.
223.
334.
445.
556.
667.
778.
889.

100

126
182
312

18
0
1492
2117
2601
3011
3376
3709
4017
4306
458
484
859
946
987
012
028
04
049

. 056

06
07

RPRRRRRPRR

0

Appendix 5

NORMALISED PERIODS OF ORBITS

a

-.5000E+00
-.5000E+00
-.5000E+00
-.5000E+00
-.5000E+00
-.6000E+00
-.6000E+00
-.6000E+00
-.6000E+00
-.6700E+00
-.7000E+00
-.7000E+00
-.7000E+00
-.7000E+00
-.7300E+00
-.7300E+00
-.8000E+00
-.8000E+00
-.8000E+00
-.8000E+00
-.9000E+00
-.9000E+00
-.9000E+00

B

.1000E+00
.3000E+00
.5000E+00
.7000E+00
.8000E+00
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.7400E+00
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.6000E+00
.6600E+00
.1000E+00
.3000E+00
.5000E+00
.5990E+00
.1000E+00
.3000E+00
.4000E+00

R,

.2300E+06
.2570E+04
.2500E+03
.3728E+02
1316E+02
4969E+01
4712E+01
.4100E+01
.2867E+01
A1221E+01
.2482E+01
.2334E+01
1991E+01
1220E+01
1442E+01
1194E+01
.1653E+01
.1540E+01
.1270E+01
.1004E+01
1239E+01
1142E+01
.1046E+01

AND THEIR RADIUSES OF APOCENTRES

@l t,

1.0011429E+09
1.0121802E+06
1.0385842E+04
1.1153700E+03
1.2468627E+02
1.0012101E+02
1.0181968E+02
1.0631694E+02
1.2281205E+02
2.8791064E+02
1.0028632E+01
1.0258172E+01
1.0977203E+01
1.8236914E+01
1.2465680E+01
1.5625841E+01
1.0035373E+01
1.0325112E+01
1.1464616E+01
1.3904362E+01
1.0033929E+01
1.0443764E+01
1.0863565E+01
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“For a long time still I spoke to some friends-physicists: attend and
construct an electrodynamics, which based on the dependence on
the force from the velocity of a charge ... And here, at last, I see
fulfillment of this problem ... In verity of your way I practically
do not doubt."

23.01.95. Prof. V.V. Chesheyv, doctor of philosophic sciences.
"...I want to mark an extreme simplicity and clearness of your idea,
which now is not being meeting in the scientific publications. ... For
the first time there is a good scientific work about the relativity theory
and about the laws of electromagnetic interaction, it is your book".

25.02.95 B.A. Bondareyv, physicist.
"Your book I read till 3-00 to night ... I was especially pleasant by the
explanation of an invariance of mass, and I completely agree that the
interaction of two charged particles depends on their relative
velocity."
17.10.95 A.A. Dolgov, physicist.
"In youth I have spent a lot of time trying to find a discrepancy at
Einstein, as I could not accept the conclusions following from his
theory. It seems to me by scientific speculation, with what I continue
to consider it. Unfortunately, I could not to find such discrepancies,
therefore I have left occupations by physics and have concentrated
the efforts on engineering, in which all is kept on sanity of sense of a
reality. It was possible for you. Your conclusions are not simply
convincing, they inspire and give hope."
1.03.96. Prof. V.V. Bugrovsky, doctor of technical sciences.
"... This 1s a monstrous crime before a science that "the censorship”
does not pass works, in which the gravitation is investigated without
application of Einstein's hypotheses. For you it was necessary anew
to discovery that at one time it was offered Heaviside, though you go
in your book much further, than Heaviside."
04.06.96. Prof. Oleg D. Jefimenko.
"Prof. Smulsky is arguably the most outspoken and distinguished
opponent of Special Theory of Relativity; his contribution honours
for Special. Rel. Let".
G.Walton, SRL - 1997.-V.1, N.3.-P.61.
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